01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Troisième
  3. Mathématiques
  4. Quiz brevet : Fonctions

Fonctions Quiz brevet

Ce contenu a été rédigé par l'équipe éditoriale de Kartable.

Dernière modification : 02/03/2021 - Conforme au programme 2020-2021

Quel type d'expression admet une fonction linéaire f ?

Une fonction linéaire f est de la forme f\left(x\right)=ax.

Si on a la fonction linéaire qui à tout nombre x associe le nombre y défini par y=ax, comment s'appellent respectivement x et y ?

Si on a la fonction linéaire qui à tout nombre x associe le nombre y défini par y=ax, le nombre x est l'antécédent et le nombre y est l'image.

Que suffit-il de connaître concernant une fonction linéaire x\mapsto ax, pour pouvoir calculer une image ou un antécédent ?

Pour pouvoir calculer une image ou un antécédent avec une fonction linéaire x\mapsto ax, il suffit de connaître son coefficient a.

Dans quel type de situation rencontre-t-on une fonction linéaire ?

On rencontre une fonction linéaire dans une situation de proportionnalité.

Si on augmente un prix de t\% quel est le coefficient multiplicateur pour obtenir le nouveau prix ?

Si on augmente un prix de t\%, pour obtenir le nouveau prix, le coefficient multiplicateur est 1+\dfrac{t}{100}.

Si on diminue un prix de t\%, quel est le coefficient multiplicateur pour obtenir le nouveau prix ?

Si on diminue un prix de t\%, pour obtenir le nouveau prix, le coefficient multiplicateur est 1-\dfrac{t}{100}.

Quelle est la représentation graphique d'une fonction linéaire ?

La représentation graphique d'une fonction linéaire est une droite passant par l'origine du repère.

Quel type d'expression admet une fonction affine f ?

Une fonction affine f admet une expression du type f(x)=mx+p.

Si le coefficient d'une fonction affine est nul, quel type de fonction obtient-on ?

Si le coefficient d'une fonction affine est nul, on obtient une fonction constante.

Quelle est la proposition vraie parmi les quatre suivantes ?

  • Un tableau de valeurs d'une fonction affine est un tableau de proportionnalité.
  • Un tableau de valeurs d'une fonction affine n'est pas, en général, un tableau de proportionnalité.
  • Un tableau de valeurs d'une fonction affine ne peut pas être un tableau de proportionnalité.
  • Un tableau de valeurs d'une fonction affine doit être un tableau de proportionnalité.

La proposition vraie est : "Un tableau de valeurs d'une fonction affine n'est pas, en général, un tableau de proportionnalité".

À quoi sert le tableau de valeurs d'une fonction ?

Le tableau de valeurs d'une fonction permet de regrouper plusieurs antécédents et images.

Si f est une fonction affine x\mapsto mx+p telle que f\left(x_1\right)=y_1 et f\left(x_2\right)=y_2, comment calcule-t-on la valeur du coefficient m ?

Si f est une fonction affine x\mapsto mx+p telle que f\left(x_1\right)=y_1 et f\left(x_2\right)=y_2, le coefficient m vaut : m=\dfrac{y_2-y_1}{x_2-x_1}.

Si on trace la représentation graphique d'une fonction affine mx+p, quel nom donne-t-on respectivement à m et p ?

Si on trace la représentation graphique d'une fonction affine mx+p, m est le coefficient directeur et p l'ordonnée à l'origine.

Quelle est la proposition vraie parmi les quatre suivantes ?

  • Toute droite non verticale passant par l'origine du repère est la représentation graphique d'une fonction linéaire.
  • Toute droite coupant l'axe des ordonnées du repère est la représentation graphique d'une fonction linéaire.
  • Toute droite verticale est la représentation graphique d'une fonction linéaire.
  • Toute droite verticale est la représentation graphique d'une fonction affine.

La proposition vraie est : "Toute droite non verticale passant par l'origine du repère est la représentation graphique d'une fonction linéaire".

Que peut-on dire de deux droites ayant le même coefficient directeur ?

Deux droites ayant le même coefficient directeur sont parallèles.

Quelle est la proposition vraie parmi les quatre suivantes ?

  • En dehors des fonctions linéaires et affines, il existe d'autres fonctions dont la représentation graphique est une droite.
  • Les fonctions linéaires et affines sont des fonctions numériques parmi d'autres.
  • Les fonctions linéaires et affines sont les seules fonctions numériques existantes.
  • Toute relation qui associe à un nombre variable x plusieurs nombres y définit une fonction numérique.

La proposition vraie est : "Les fonctions linéaires et affines sont des fonctions numériques parmi d'autres".

Combien existe-t-il d'image(s) d'un nombre x par une fonction f ?

Si elle existe, l'image de x par f est unique.

Combien un nombre peut-il admettre d'antécédents ?

Un nombre peut admettre zéro, un ou plusieurs antécédents.

Quelle est la proposition vraie parmi les quatre suivantes ?

  • On appelle image de x par f le nombre y qui vérifie : f\left(x\right) = y.
  • On appelle antécédents de x par f le ou les nombres y qui vérifie(nt) : f\left(x\right) = y.
  • L'image de x par f est l'ordonnée du point de C_{f} d'abscisse y.
  • Les antécédents de x par f sont les abscisses des points de C_{f} d'ordonnées y.

La proposition vraie est : "On appelle image de x par f le nombre y qui vérifie : f\left(x\right) = y ".

Qu'est-ce que la courbe représentative C_f d'une fonction f dans un repère du plan ?

La courbe représentative C_{f} d'une fonction f dans un repère du plan est l'ensemble des points de coordonnées \left(x ; f\left(x\right)\right).

La charte éditoriale garantit la conformité des contenus aux programmes officiels de l'Éducation nationale. en savoir plus

Les cours et exercices sont rédigés par l'équipe éditoriale de Kartable, composéee de professeurs certififés et agrégés. en savoir plus

Voir aussi
  • Fiche brevet : Fonctions

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20263  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025