01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Terminale
  3. Mathématiques
  4. Exercice : Déterminer la représentation adaptée à un problème de dénombrement

Déterminer la représentation adaptée à un problème de dénombrement Exercice

Un sac contient :

  • 4 boules bleues numérotées de 1 à 4 ;
  • 7 boules vertes numérotées de 1 à 7.

 

Quelle est la bonne représentation graphique de la situation de dénombrement ?

Un sac contient :

  • 5 boules bleues respectivement numérotées 1, 1, 2, 3, 3 ;
  • 4 boules vertes respectivement numérotées 4, 4, 3, 2.

 

Quelle est la bonne représentation graphique de la situation de dénombrement ?

On cherche à dénombrer tous les anagrammes du mot « SOPHIE » (sans répétition possible).

Quelle est la bonne représentation graphique de la situation de dénombrement ?

On cherche à dénombrer tous les « mots » de 3 lettres possibles en utilisant les lettres du mot « SOPHIE », avec répétition possible.

Quelle est la bonne représentation graphique de la situation de dénombrement ?

Un sac contient 7 boules numérotées de 1 à 7.
On tire 3 boules sans remise et on note les 3 numéros tirés dans l'ordre. 

Combien de nombres de trois chiffres peut-on former ?
Quelle est la bonne représentation graphique de la situation de dénombrement ?

Voir aussi
  • Cours : Combinatoire et dénombrement
  • Quiz : Combinatoire et dénombrement
  • Exercice : Connaître le vocabulaire du dénombrement
  • Exercice : Déterminer la réunion d'ensembles finis
  • Exercice : Déterminer l'intersection d'ensembles finis
  • Exercice : Déterminer le produit cartésien d'ensembles finis
  • Exercice : Déterminer si deux ensembles finis sont disjoints
  • Exercice : Déterminer le cardinal d'un ensemble fini
  • Exercice : Déterminer le cardinal d'une réunion d'ensembles finis deux à deux disjoints
  • Exercice : Déterminer le cardinal d'une intersection de deux ensembles finis non disjoints
  • Exercice : Déterminer le cardinal d'un produit cartésien de deux ensembles finis
  • Exercice : Déterminer le cardinal d'un produit cartésien d'ensembles finis
  • Exercice : Déterminer le nombre de k-uplet d'un ensemble fini avec répétition
  • Exercice : Connaître les caractéristiques de la factorielle
  • Exercice : Calculer la valeur d'une factorielle
  • Exercice : Déterminer le nombre de k-uplet d'un ensemble fini sans répétition
  • Exercice : Déterminer le nombre de permutation d'un ensemble fini
  • Exercice : Déterminer le nombre de sous-ensembles à k éléments d'un ensemble fini
  • Exercice : Déterminer le nombre de parties d'un ensemble fini
  • Exercice : Calculer la valeur d'un coefficient binomial
  • Exercice : Démontrer la relation de la somme des coefficients binomiaux par dénombrement
  • Exercice : Démontrer la formule de Pascal par le calcul
  • Exercice : Démontrer la formule de Pascal par méthode combinatoire
  • Problème : Démontrer une égalité à l'aide de la formule de Pascal
  • Exercice : Reconnaître les objets à dénombrer dans un problème de dénombrement
  • Problème : Réaliser un dénombrement simple dans une situation d'informatique
  • Problème : Réaliser un dénombrement simple dans une situation de génétique
  • Problème : Réaliser un dénombrement simple dans une situation de théorie des jeux
  • Problème : Réaliser un dénombrement simple dans une situation de probabilité
  • Problème : Générer par un algorithme une liste de coefficients binomiaux successifs à l'aide de la relation de Pascal
  • Problème : Générer par un algorithme des permutations d'un ensemble fini
  • Problème : Générer par un algorithme le tirage aléatoire d'une permutation d'un ensemble fini
  • Problème : Générer par un algorithme les parties à 2 et à 3 éléments d'un ensemble fini

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20259  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025