La continuitéCours

I

La continuité sur un intervalle

Fonction continue

Une fonction f est continue sur un intervalle I si et seulement s'il est possible de tracer sa courbe représentative sur I sans lever le crayon.

La fonction dont la courbe est représentée ci-dessous est continue sur \left[ a;b \right].

-

La fonction dont la courbe est représentée ci-dessous n'est pas continue en 2 (donc elle n'est pas continue sur \left[ 0;4 \right] ).

-
  • Les fonctions usuelles (affine, puissance, exponentielle, inverse, racine, logarithme) sont continues sur tout intervalle inclus dans leur ensemble de définition.
  • Toute fonction construite comme somme, produit ou quotient de fonctions continues sur un intervalle I est continue sur I. Dans le cas d'un quotient, la fonction par laquelle on divise ne doit pas s'annuler sur I.

Toute fonction dérivable sur I est continue sur I. La réciproque est fausse.

II

Le théorème des valeurs intermédiaires

Théorème des valeurs intermédiaires

Soit f une fonction continue sur un intervalle I, et a et b deux réels de cet intervalle. Pour tout réel k compris entre f\left(a\right) et f\left(b\right), il existe au moins un réel c compris entre a et b tel que f\left(c\right) = k.

Graphiquement, la courbe représentative de f coupe au moins une fois la droite d'équation y= k sur \left[ a;b\right].

La fonction f représentée ci-dessous est continue sur \left[0 ; 5\right].

  • f\left(0\right)=0
  • f\left(5\right)=4{,}8

L'équation f\left(x\right) = 3 admet donc au moins une solution sur \left[0 ; 5\right]. Graphiquement, on remarque en effet que la courbe coupe au moins une fois la droite d'équation y = k.

-

Cas particulier pour k=0 :

Si f est continue sur \left[a ; b\right] et si f\left(a\right) et f\left(b\right) sont de signes opposés, alors f s'annule au moins une fois entre a et b.

Corollaire du théorème des valeurs intermédiaires

Si f est continue et strictement monotone sur \left[a ; b\right], alors pour tout réel k compris entre f\left(a\right) et f\left(b\right), il existe un unique réel c compris entre a et b tel que f\left(c\right) = k.

Questions fréquentes

Quelles sont les matières disponibles sur Kartable ?

Sur Kartable, l'élève accède à toutes les matières principales de la primaire au lycée, y compris pour les spécialités et les options. Mathématiques, physique-chimie, SVT, sciences, français, littérature, histoire, géographie, enseignement moral et civique, SES, philosophie, anglais, allemand et espagnol.
Inscrivez-vous

Les cours sont-ils conformes aux programmes officiels de l'Education nationale ?

L'intégralité des cours sur Kartable est rédigée par des professeurs de l'Éducation nationale et est conforme au programme en vigueur, incluant la réforme du lycée de l'année 2019-2020.
Choisissez votre formule

L'élève peut-il accéder à tous les niveaux ?

Sur Kartable, l'élève peut accéder à toutes les matières dans tous les niveaux de son choix. Ainsi, il peut revenir sur les notions fondamentales qu'il n'aurait pas comprises les années précédentes et se perfectionner.
Plus d'info

Kartable est-il gratuit ?

L'inscription gratuite donne accès à 10 contenus (cours, exercices, fiches ou quiz). Pour débloquer l'accès illimité aux contenus, aux corrections d'exercices, mode hors-ligne et téléchargement en PDF, il faut souscrire à l'offre Kartable Premium.
Plus d'info

Qui rédige les cours de Kartable ?

L'intégralité des contenus disponibles sur Kartable est conçue par notre équipe pédagogique, composée de près de 200 enseignants de l'Éducation nationale que nous avons sélectionnés.
Afficher plus

Qu'est ce que le service Prof en ligne ?

L'option Prof en ligne est un service de chat en ligne entre élèves et professeurs. Notre Prof en ligne répond à toutes les questions sur les cours, exercices, méthodologie et aide au devoirs, pour toutes les classes et dans toutes les matières. Le service est ouvert du lundi au vendredi de 16h à 19h pour les membres ayant souscrit à l'option.
Choisissez votre formule