01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Terminale ES
  3. Mathématiques
  4. Cours : La continuité

La continuité Cours

Sommaire

ILa continuité sur un intervalleIILe théorème des valeurs intermédiaires
I

La continuité sur un intervalle

Fonction continue

Une fonction f est continue sur un intervalle I si et seulement s'il est possible de tracer sa courbe représentative sur I sans lever le crayon.

La fonction dont la courbe est représentée ci-dessous est continue sur \left[ a;b \right].

-

La fonction dont la courbe est représentée ci-dessous n'est pas continue en 2 (donc elle n'est pas continue sur \left[ 0;4 \right] ).

-
  • Les fonctions usuelles (affine, puissance, exponentielle, inverse, racine, logarithme) sont continues sur tout intervalle inclus dans leur ensemble de définition.
  • Toute fonction construite comme somme, produit ou quotient de fonctions continues sur un intervalle I est continue sur I. Dans le cas d'un quotient, la fonction par laquelle on divise ne doit pas s'annuler sur I.

Toute fonction dérivable sur I est continue sur I. La réciproque est fausse.

II

Le théorème des valeurs intermédiaires

Théorème des valeurs intermédiaires

Soit f une fonction continue sur un intervalle I, et a et b deux réels de cet intervalle. Pour tout réel k compris entre f\left(a\right) et f\left(b\right), il existe au moins un réel c compris entre a et b tel que f\left(c\right) = k.

Graphiquement, la courbe représentative de f coupe au moins une fois la droite d'équation y= k sur \left[ a;b\right].

La fonction f représentée ci-dessous est continue sur \left[0 ; 5\right].

  • f\left(0\right)=0
  • f\left(5\right)=4{,}8

L'équation f\left(x\right) = 3 admet donc au moins une solution sur \left[0 ; 5\right]. Graphiquement, on remarque en effet que la courbe coupe au moins une fois la droite d'équation y = k.

-

Cas particulier pour k=0 :

Si f est continue sur \left[a ; b\right] et si f\left(a\right) et f\left(b\right) sont de signes opposés, alors f s'annule au moins une fois entre a et b.

Corollaire du théorème des valeurs intermédiaires

Si f est continue et strictement monotone sur \left[a ; b\right], alors pour tout réel k compris entre f\left(a\right) et f\left(b\right), il existe un unique réel c compris entre a et b tel que f\left(c\right) = k.

Voir aussi
  • Quiz : La continuité
  • Méthode : Montrer qu'une équation du type f(x)=k admet une unique solution
  • Méthode : Déterminer le nombre de solutions d'une équation du type f(x)=k
  • Méthode : Ecrire un algorithme qui encadre la solution de l'équation f(x)=0
  • Méthode : Donner un encadrement ou une valeur approchée de la solution d'une équation du type f(x)=k
  • Exercice : Déterminer le nombre de solutions d'une équation à l'aide d'un tableau de variations
  • Exercice : Montrer qu'une équation du type f(x)=k admet une unique solution

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20257  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025