01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Première ES
  3. Mathématiques
  4. Formulaire : Loi binomiale et fluctuations d'échantillonnage

Loi binomiale et fluctuations d'échantillonnage Formulaire

Ce contenu a été rédigé par l'équipe éditoriale de Kartable.

Dernière modification : 24/10/2018 - Conforme au programme 2018-2019

Loi binomiale

Soit un réel p compris entre 0 et 1 et n un entier naturel non nul.
Si une variable aléatoire suit la loi binomiale de paramètres n et p, notée B\left(n ; p\right), alors :

  • X\left(\Omega\right) = [\![0 ; n]\!]
  • \forall k \in [\![0 ; n]\!] \text{ , } P\left(X = k\right) =\binom{n}{k}p^{k} \left(1 - p\right)^{n-k}

Coefficient binomial

Soient un ensemble E de cardinal n (\in \mathbb{N}^{*}) et k un entier naturel inférieur ou égal à n.
Le nombre de parties de E possédant k éléments, est égal au coefficient binomial noté :

\binom{n}{k}

Espérance d'une loi binomiale

Si X suit la loi binomiale de paramètres n et p, on a :

E\left(X\right) = np

Intervalle de fluctuation

L'intervalle de fluctuation au coefficient 95 % de la fréquence correspondant à la réalisation, sur un échantillon aléatoire de taille n, d'une variable aléatoire X suivant une loi binomiale, est \left[ \dfrac{a}{n};\dfrac{b}{n} \right], où a est le plus petit entier tel que P\left(X\leq a\right)\gt0{,}025, et b le plus petit entier tel que P\left(X\leq b\right) \geq0{,}975.

La charte éditoriale garantit la conformité des contenus aux programmes officiels de l'Éducation nationale. en savoir plus

Les cours et exercices sont rédigés par l'équipe éditoriale de Kartable, composéee de professeurs certififés et agrégés. en savoir plus

Voir aussi
  • Cours : Loi binomiale et fluctuations d'échantillonnage
  • Quiz : Loi binomiale et fluctuations d'échantillonnage
  • Méthode : Reconnaître une loi binomiale
  • Méthode : Calculer et interpréter E(X) dans une loi binomiale
  • Méthode : Déterminer un intervalle de fluctuation
  • Méthode : Déterminer si un échantillon est représentatif d'une population
  • Exercice : Montrer qu'une variable aléatoire suit une loi binomiale
  • Exercice : Déterminer des coefficients binomiaux sans la calculatrice
  • Exercice : Calculer des probabilités en introduisant une loi binomiale
  • Exercice : Calculer l'espérance d'une loi binomiale
  • Exercice : Déterminer un intervalle de fluctuation dans le cadre d'une loi binomiale
  • Problème : Etudier un problème à l'aide d'une loi binomiale
  • Problème : Prendre une décision à l'aide d'un intervalle de fluctuation

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20259  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025