01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Première
  3. Enseignement scientifique
  4. Exercice : Calculer la longueur d'un méridien à l'aide d'une triangularisation

Calculer la longueur d'un méridien à l'aide d'une triangularisation Exercice

Ce contenu a été rédigé par l'équipe éditoriale de Kartable.

Dernière modification : 12/05/2025 - Conforme au programme 2024-2025

On souhaite déterminer la longueur d'un méridien à l'aide d'une triangularisation.

a

Quel est le principe de la mesure d'une distance par triangulation ?

b

Dans le triangle suivant, on désire déterminer la longueur du segment  \left[ AM \right] :

-

Pour déterminer cette longueur, on a mesuré :

  • la longueur du segment  \left[ AC \right]  ;
  • les angles  \widehat{A}  et  \widehat{C}.

 

Quelle est l'expression correcte de la longueur AM  ?

Données : On sait que dans un triangle :

  • La somme des angles est égale à 180°.
  • Les longueurs des côtés et les angles sont liés par la loi des sinus :   \dfrac{a}{\text{sin} \widehat{A}} = \dfrac{b}{\text{sin} \widehat{B}} = \dfrac{c}{\text{sin} \widehat{C}}.
c

Au XVIIIe siècle, les astronomes français Delambre et Méchain ont déterminé par triangulation la distance séparant les villes Dunkerque et Barcelone :

-
-

Sachant que la distance qu'ils ont déterminés est de 1 090 km et que l'angle ayant pour sommet le centre de la Terre et sépare ces deux villes est 9,8°, quel est le calcul donnant la longueur d'un méridien ?

La charte éditoriale garantit la conformité des contenus aux programmes officiels de l'Éducation nationale. en savoir plus

Les cours et exercices sont rédigés par l'équipe éditoriale de Kartable, composéee de professeurs certififés et agrégés. en savoir plus

Voir aussi
  • Cours : La forme de la Terre
  • Quiz : La forme de la Terre
  • Méthode : Calculer une longueur par la méthode de triangulation utilisée par Delambre et Méchain
  • Méthode : Calculer la longueur d'un arc de méridien
  • Méthode : Calculer la longueur d'un arc de parallèle
  • Exercice : Connaître les caractéristiques géométriques de la Terre
  • Exercice : Différencier parallèle et méridien
  • Exercice : Différencier longitude et latitude
  • Exercice : Calculer la distance entre deux points de même longitude
  • Exercice : Calculer la distance entre deux points de même latitude
  • Exercice : Calculer la distance entre deux points de latitude et de longitude différentes
  • Exercice : Comparer des distances à l'aide de la latitude et de la longitude
  • Exercice : Calculer la longueur d'un méridien à la manière d'Ératosthène
  • Exercice : Choisir une triangulation adaptée
  • Exercice : Calculer un angle dans une triangulation donnée
  • Exercice : Calculer une longueur dans une triangulation donnée
  • Exercice : Calculer le rayon terrestre à l'aide d'une triangulation

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20259  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025