01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Terminale
  3. Mathématiques complémentaires
  4. Exercice : Conjecturer graphiquement si une fonction est convergente ou divergente

Conjecturer graphiquement si une fonction est convergente ou divergente Exercice

On rappelle la représentation graphique de la fonction f définie par : 
f(x) = \dfrac{2x+5}{\sqrt{x-12}}  

Quelle est la nature de la fonction f en +\infty ? 

-

On rappelle la représentation graphique de la fonction f définie par :
f(x) = \dfrac{-3x^3+2x}{\sqrt{x^2+1}}  

Quelle est la nature de la fonction f en +\infty ?

-

On rappelle la représentation graphique de la fonction f définie par :
f(x) = \dfrac{2x^2+3}{x^2-4} 

Quelle est la nature de la fonction f en +\infty ?

-

On rappelle la représentation graphique de la fonction f définie par :
f(x) = 3x^3+2x-4  

Quelle est la nature de la fonction f en -\infty ?

-

On rappelle la représentation graphique de la fonction f définie par :
f(x) = \exp(x+2)\times x^2 

Quelle est la nature de la fonction f en -\infty ?

-
Voir aussi
  • Cours : Les limites de fonctions
  • Exercice : Connaître les caractéristiques des limites infinies de fonctions
  • Exercice : Connaître les caractéristiques des limites finies de fonctions
  • Exercice : Connaître les caractéristiques d'une fonction convergente
  • Exercice : Connaître les caractéristiques d'une fonction divergente
  • Exercice : Déterminer la continuité d'une fonction usuelle
  • Exercice : Conjecturer graphiquement la limite d'une fonction
  • Exercice : Connaître la convergence des fonctions usuelles
  • Exercice : Déterminer la limite d'un polynôme du second degré
  • Exercice : Déterminer la limite d'une fonction carré composée par une fonction affine
  • Exercice : Déterminer la limite d'une fonction puissance entière composée par une fonction affine
  • Exercice : Déterminer la limite d'une fonction racine carré composée par une fonction affine
  • Exercice : Déterminer la limite d'une fonction inverse composée par une fonction affine
  • Exercice : Déterminer la limite d'une fonction exponentielle composée par une fonction affine
  • Exercice : Déterminer le nombre de solution d'une équation du type f(x) = k à l'aide du tableau de variations de f
  • Exercice : Compléter le tableau de convergence d'une somme de fonctions
  • Exercice : Déterminer la limite d'une somme de fonctions usuelles
  • Exercice : Encadrer une solution d'une équation du type f(x) = k à l'aide du tableau de variations de f
  • Exercice : Déterminer les solutions d'une équation du type f(x) = k avec f une fonction usuelle
  • Exercice : Déterminer les solutions d'une équation du type f(x) = k avec f une fonction composée
  • Exercice : Compléter le tableau de convergence d'un produit de fonctions
  • Exercice : Déterminer les solutions d'une équation du type f(x) = k avec f des opérations de fonctions usuelles
  • Exercice : Déterminer les solutions d'une équation du type f(x) = k avec f des opérations de fonctions composées
  • Exercice : Déterminer la limite d'un produit de fonctions usuelles
  • Exercice : Déterminer la limite d'un produit de fonctions usuelles composées
  • Exercice : Compléter le tableau de convergence d'un quotient de fonctions
  • Exercice : Déterminer la limite d'un quotient de fonctions usuelles
  • Exercice : Déterminer la limite de plusieurs opérations de fonctions usuelles
  • Exercice : Déduire une limite d'une asymptote horizontale
  • Exercice : Déduire une limite d'une asymptote verticale
  • Exercice : Déduire une limite d'une asymptote
  • Exercice : Déterminer graphiquement les asymptotes
  • Problème : Etudier les variations et les limites d'une fonction construite simplement à partir des fonctions usuelles
  • Exercice : Déterminer graphiquement les asymptotes horizontales d'une fonction usuelle
  • Problème : Etudier les variations et les limites d'une fonction construite simplement à partir des fonctions composées
  • Exercice : Déterminer graphiquement les asymptotes verticales d'une fonction usuelle
  • Exercice : Déterminer graphiquement les asymptotes d'une fonction usuelle

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20256  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025