01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Terminale
  3. Mathématiques complémentaires
  4. Exercice : Déduire une limite d'une asymptote verticale

Déduire une limite d'une asymptote verticale Exercice

On donne la représentation graphique de la fonction f définie par :
f(x) = \dfrac{2x-3}{x-5}

Les asymptotes verticales de f sont tracées en rouge.

Quelle est la limite \lim\limits_{x\rightarrow 5^+} f(x)  ?

-

On donne la représentation graphique de la fonction f définie par : 
f(x) = \dfrac{3x-4}{2x-2}

Les asymptotes verticales de f sont tracées en rouge.

Quelle est la limite \lim\limits_{x\rightarrow 1^+} f(x)  ?

-

On donne la représentation graphique de la fonction f définie par :
f(x) = \dfrac{x+2}{x-2}+\dfrac{x-2}{x+2}

Les asymptotes verticales de f sont tracées en rouge.

Quelle est la limite \lim\limits_{x\rightarrow -2^-} f(x)  ?

-

On donne la représentation graphique de la fonction f définie par :
f(x) = \dfrac{3x^2+6x+4}{x^2-9}

Les asymptotes verticales de f sont tracées en rouge.

Quelle est la limite \lim\limits_{x\rightarrow 3^-} f(x)  ?

-

On donne la représentation graphique de la fonction f définie par :
f(x) = \dfrac{x-4}{(x-1)^2}

Les asymptotes verticales de f sont tracées en rouge.

Quelle est la limite \lim\limits_{x\rightarrow 1^-} f(x)  ?

-
Voir aussi
  • Cours : Les limites de fonctions
  • Exercice : Connaître les caractéristiques des limites infinies de fonctions
  • Exercice : Connaître les caractéristiques des limites finies de fonctions
  • Exercice : Connaître les caractéristiques d'une fonction convergente
  • Exercice : Connaître les caractéristiques d'une fonction divergente
  • Exercice : Conjecturer graphiquement si une fonction est convergente ou divergente
  • Exercice : Déterminer la continuité d'une fonction usuelle
  • Exercice : Conjecturer graphiquement la limite d'une fonction
  • Exercice : Connaître la convergence des fonctions usuelles
  • Exercice : Déterminer la limite d'un polynôme du second degré
  • Exercice : Déterminer la limite d'une fonction carré composée par une fonction affine
  • Exercice : Déterminer la limite d'une fonction puissance entière composée par une fonction affine
  • Exercice : Déterminer la limite d'une fonction racine carré composée par une fonction affine
  • Exercice : Déterminer la limite d'une fonction inverse composée par une fonction affine
  • Exercice : Déterminer la limite d'une fonction exponentielle composée par une fonction affine
  • Exercice : Déterminer le nombre de solution d'une équation du type f(x) = k à l'aide du tableau de variations de f
  • Exercice : Compléter le tableau de convergence d'une somme de fonctions
  • Exercice : Déterminer la limite d'une somme de fonctions usuelles
  • Exercice : Encadrer une solution d'une équation du type f(x) = k à l'aide du tableau de variations de f
  • Exercice : Déterminer les solutions d'une équation du type f(x) = k avec f une fonction usuelle
  • Exercice : Déterminer les solutions d'une équation du type f(x) = k avec f une fonction composée
  • Exercice : Compléter le tableau de convergence d'un produit de fonctions
  • Exercice : Déterminer les solutions d'une équation du type f(x) = k avec f des opérations de fonctions usuelles
  • Exercice : Déterminer les solutions d'une équation du type f(x) = k avec f des opérations de fonctions composées
  • Exercice : Déterminer la limite d'un produit de fonctions usuelles
  • Exercice : Déterminer la limite d'un produit de fonctions usuelles composées
  • Exercice : Compléter le tableau de convergence d'un quotient de fonctions
  • Exercice : Déterminer la limite d'un quotient de fonctions usuelles
  • Exercice : Déterminer la limite de plusieurs opérations de fonctions usuelles
  • Exercice : Déduire une limite d'une asymptote horizontale
  • Exercice : Déduire une limite d'une asymptote
  • Exercice : Déterminer graphiquement les asymptotes
  • Problème : Etudier les variations et les limites d'une fonction construite simplement à partir des fonctions usuelles
  • Exercice : Déterminer graphiquement les asymptotes horizontales d'une fonction usuelle
  • Problème : Etudier les variations et les limites d'une fonction construite simplement à partir des fonctions composées
  • Exercice : Déterminer graphiquement les asymptotes verticales d'une fonction usuelle
  • Exercice : Déterminer graphiquement les asymptotes d'une fonction usuelle

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20256  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025