Les suites Formulaire

Sommaire

Suites arithmétiques et géométriques

Suite arithmétique de raison r et de premier terme u_0 Suite géométrique de raison q et de premier terme u_0
Relation de récurrence u_{n+1}=u_n+r u_{n+1}=u_n\times q
Terme général

Pour tout entier n\geq p :

u_{n} = u_{p} + \left(n - p\right) r

En particulier, si \left(u_{n}\right) est définie dès le rang 0 :

u_{n} = u_{0} + nr

Pour tout entier n\geq p :

u_{n} = u_{p} \times q^{n-p}

En particulier, si \left(u_{n}\right) est définie dès le rang 0 :

u_{n} = u_{0} \times q^{n}

La limite d'une suite géométrique de terme général q^{n}

La limite de la suite géométrique de terme général q^{n} dépend de la valeur de q :

Condition sur q Limite de \left(q^n\right)
0 \lt q \lt 1 \lim_{n \to +\infty } q^{n} = 0
q = 1 \lim_{n \to +\infty } q^{n} = 1
q \gt 1 \lim_{n \to +\infty } q^{n} = + \infty