Etude de fonctionsCours

I

Existence et représentation graphique

A

Le domaine de définition

Domaine de définition

Le domaine de définition D_{f} d'une fonction f est l'ensemble des réels x pour lesquels f\left(x\right) existe.

L'ensemble de définition de la fonction f définie par f\left(x\right)=3x^5+5x^3-1 est D_f=\mathbb{R}.

B

La courbe représentative

Courbe représentative

La courbe représentative C_{f} d'une fonction f dans un repère du plan est l'ensemble des points de coordonnées \left(x ; f\left(x\right)\right), pour tous les réels x du domaine de définition de f.

-
C

Résolutions graphiques

1

Signe d'une fonction

Fonction positive

Une fonction f est positive sur I si et seulement si, pour tout réel x de I :

f\left(x\right) \geq 0

Une fonction est positive sur I si et seulement si sa courbe représentative est située au-dessus de l'axe des abscisses pour tout réel de l'intervalle I.

La fonction représentée ci-dessous est positive sur l'intervalle \left[0 ; 2\right].

-
Fonction négative

Une fonction f est négative sur I si et seulement si, pour tout réel x de I :

f\left(x\right) \leq0

Une fonction est négative sur I si et seulement si sa courbe représentative est située en dessous de l'axe des abscisses pour tout réel de l'intervalle I.

La fonction représentée ci-dessous est négative sur l'intervalle \left[0 ; 2\right].

-
2

Résolutions d'équations et inéquations

Résolution graphique d'une équation de la forme f\left(x\right)=k

Soit f une fonction continue sur I, C_f sa courbe représentative dans un repère, et k un réel fixé.

Les solutions de l'équation f\left(x\right)=k sont les abscisses des points d'intersection de la courbe C_f avec la droite "horizontale" d'équation y=k.

-

Les solutions de l'équation f\left(x\right)=k sont les réels x_1, x_2, x_3 et x_4.

Résolution graphique d'une inéquation de la forme f\left(x\right)\geq k

Soit f une fonction continue sur I, C_f sa courbe représentative dans un repère, et k un réel fixé.

Les solutions de l'inéquation f\left(x\right)\geq k sont les abscisses des points de la courbe C_f situés au-dessus de la droite "horizontale" d'équation y=k.

-

Les solutions de l'inéquation f\left(x\right)\geq k sont les réels appartenant à \left[x_1;x_2\right]\cup\left[x_3;x_4\right].

II

Comportement

A

Le sens de variation

Fonction croissante

Une fonction f est croissante sur un intervalle I si et seulement si elle est définie sur I, et pour tous réels x et y de I tels que x \lt y :

f\left(x\right) \leq f\left(y\right)

-

Fonction strictement croissante

Une fonction f est strictement croissante sur un intervalle I si et seulement si elle est définie sur I, et pour tous réels x et y de I tels que x \lt y :

f\left(x\right) \lt f\left(y\right)

Fonction décroissante

Une fonction f est décroissante sur un intervalle I si et seulement si elle est définie sur I, et pour tous réels x et y de I tels que x \lt y :

f\left(x\right) \geq f\left(y\right)

-

Fonction strictement décroissante

Une fonction f est strictement décroissante sur un intervalle I si et seulement si elle est définie sur I, et pour tous réels x et y de I tels que x \lt y :

f\left(x\right) \gt f\left(y\right)

Fonction constante

Une fonction f est constante sur un intervalle I si et seulement si elle est définie sur I et s'il existe un réel a tel que, pour tout réel x de I :

f\left(x\right) = a

-
B

Signe de la dérivée

Sens de variation

Soit f une fonction dérivable sur un intervalle I :

  • Si f' est positive sur I, alors f est croissante sur I.
  • Si f' est négative sur I, alors f est décroissante sur I.
  • Si f' est nulle sur I, alors f est constante sur I.

Stricte monotonie

Soit f une fonction dérivable sur un intervalle I :

  • si f' est positive et ne s'annule qu'en un nombre fini de réels sur I, alors f est strictement croissante sur I.
  • si f' est négative et ne s'annule qu'en un nombre fini de réels sur I, alors f est strictement décroissante sur I.
C

Les extremums

Maximum

Le maximum de la fonction f sur l'intervalle I est le plus grand réel f\left(x\right) sur I, s'il existe.

La fonction représentée ci-dessous admet un maximum sur l'intervalle \left[0 ; 2\right]. Ce maximum vaut 0,5 et est atteint pour x=1{,}25.

-

Minimum

Le minimum de la fonction f sur l'intervalle I est le plus petit réel f\left(x\right) sur I, s'il existe.

La fonction représentée ci-dessous admet un minimum sur l'intervalle \left[0 ; 2\right]. Ce minimum vaut 0,25 et est atteint pour x=0{,}75.

-

Un extremum est un maximum ou un minimum.

D

Opérations et variations

Sens de variation de f+g

Si deux fonctions f et g ont le même sens de variation sur l'intervalle I, la fonction h=f + g possède également le même sens de variation sur I.

Soient les fonctions f et g définies sur \mathbb{R} par f\left(x\right)=x^2 et g\left(x\right)=x^3. On définit sur \mathbb{R} la fonction h par h\left(x\right)=f\left(x\right)+g\left(x\right)=x^2+x^3.

f et g sont toutes les deux croissantes sur \left[0;+\infty\right[. Ainsi, h est également croissante sur \left[0;+\infty\right[.

Sens de variation de kf avec k\gt0

Soit k un réel strictement positif et soit f une fonction définie sur un intervalle I de \mathbb{R}.
La fonction kf possède le même sens de variation que la fonction f sur l'intervalle I.

La fonction f définie pour tout réel x par f\left(x\right)=x^2 est croissante sur \left[0;+\infty\right[. Ainsi, la fonction g définie pour tout réel x par g\left(x\right)=3f\left(x\right)=3x^2 est également croissante sur \left[0;+\infty\right[ (car 3\gt0 ).

Sens de variation de kf avec k\lt0

Soit k un réel strictement négatif et soit f une fonction définie sur un intervalle I de \mathbb{R}.
La fonction kf possède le sens de variation contraire à celui de la fonction f sur l'intervalle I.

La fonction f définie pour tout réel x par f\left(x\right)=x^2 est croissante sur \left[0;+\infty\right[. Ainsi, la fonction g définie pour tout réel x par g\left(x\right)=-5f\left(x\right)=-5x^2 est décroissante sur \left[0;+\infty\right[ (car -5\lt0 ).

Questions fréquentes

Quelles sont les matières disponibles sur Kartable ?

Sur Kartable, l'élève accède à toutes les matières principales de la primaire au lycée, y compris pour les spécialités et les options. Mathématiques, physique-chimie, SVT, sciences, français, littérature, histoire, géographie, enseignement moral et civique, SES, philosophie, anglais, allemand et espagnol.
Inscrivez-vous

Les cours sont-ils conformes aux programmes officiels de l'Education nationale ?

L'intégralité des cours sur Kartable est rédigée par des professeurs de l'Éducation nationale et est conforme au programme en vigueur, incluant la réforme du lycée de l'année 2019-2020.
Choisissez votre formule

L'élève peut-il accéder à tous les niveaux ?

Sur Kartable, l'élève peut accéder à toutes les matières dans tous les niveaux de son choix. Ainsi, il peut revenir sur les notions fondamentales qu'il n'aurait pas comprises les années précédentes et se perfectionner.
Plus d'info

Kartable est-il gratuit ?

L'inscription gratuite donne accès à 10 contenus (cours, exercices, fiches ou quiz). Pour débloquer l'accès illimité aux contenus, aux corrections d'exercices, mode hors-ligne et téléchargement en PDF, il faut souscrire à l'offre Kartable Premium.
Plus d'info

Qui rédige les cours de Kartable ?

L'intégralité des contenus disponibles sur Kartable est conçue par notre équipe pédagogique, composée de près de 200 enseignants de l'Éducation nationale que nous avons sélectionnés.
Afficher plus

Qu'est ce que le service Prof en ligne ?

L'option Prof en ligne est un service de chat en ligne entre élèves et professeurs. Notre Prof en ligne répond à toutes les questions sur les cours, exercices, méthodologie et aide au devoirs, pour toutes les classes et dans toutes les matières. Le service est ouvert du lundi au vendredi de 16h à 19h pour les membres ayant souscrit à l'option.
Choisissez votre formule