Calculer l'image d'un réel par une fonction Exercice

Soit f la fonction définie sur \mathbb{R} par f\left(x\right)=\left(-x-1\right)\left(x-2\right).

Quelle est l'image de 1 par la fonction f ?

Soit f la fonction définie sur \mathbb{R}\backslash\left\{-1 \right\} par f\left(x\right)=\dfrac{4x}{x+1}.

Quelle est l'image de −2 par la fonction f ?

Soit f la fonction définie sur \left[\dfrac{2}{5};+\infty \right[ par f\left(x\right)=\sqrt{5x-2}.

Quelle est l'image de 2 par la fonction f ?

Soit f la fonction définie sur \mathbb{R}\backslash\left\{-3 \right\} par f\left(x\right)=\dfrac{3x+2}{x+3}.

Quelle est l'image de 0 par la fonction f ?

Soit f la fonction définie sur \mathbb{R} par f\left(x\right)=2x-4.

Quelle est l'image de 2 par la fonction f ?

Soit f la fonction définie sur \left[ -\dfrac{1}{3};+\infty\right[ par f\left(x\right)=\sqrt{3x+1}.

Calculer l'image de 5 par la fonction f.

Précédent