01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Terminale
  3. Physique-Chimie
  4. Exercice : Décrire un mouvement dans un référentiel donné

Décrire un mouvement dans un référentiel donné Exercice

Ce contenu a été rédigé par l'équipe éditoriale de Kartable.

Dernière modification : 12/05/2025 - Conforme au programme 2025-2026

Un enfant joue à la console dans une voiture.

Parmi les affirmations suivantes, laquelle est juste ? 

La console de jeu est dans les mains de l'enfant, et en supposant que l'enfant ne bouge pas, la console de jeu est immobile dans son référentiel. Comme l'enfant ne bouge pas, le référentiel de l'enfant et celui de la voiture sont les mêmes. 

La console, l'enfant et la voiture sont par contre en mouvement par rapport au sol ou par rapport au centre de la Terre. Ils ne sont donc pas immobiles dans les référentiels terrestre et géocentrique. 

Des spationautes, au repos, habitent la station internationale (ISS) qui est en rotation autour de la Terre.

Dans quel référentiel les spationautes sont-ils immobiles ?

Étant au repos dans la station, les spationautes sont immobiles dans le référentiel lié à la station.

La station internationale (ISS), qui est en rotation autour de la Terre, est-elle en mouvement dans le référentiel héliocentrique ?

Étant en rotation autour de la Terre, la station suit la Terre dans son mouvement autour du Soleil ; donc la station est en mouvement dans le référentiel héliocentrique.

Un enfant assis dans un train en mouvement laisse tomber une balle.

Parmi les affirmations suivantes, lesquelles sont justes ?

La balle est en chute libre par rapport à l'enfant puisqu'il la lâche tout en restant assis ; la balle a donc un mouvement rectiligne dans le référentiel de l'enfant qui est le même que celui du train.

Un astéroïde se dirige tout droit vers la Lune.

Parmi les affirmations suivantes, laquelle est juste ?

L'astéroïde « tombe » sur la Lune ; il a donc un mouvement rectiligne dans le référentiel de celle-ci, mais pas par rapport aux autres référentiels en mouvement par rapport à la Lune.

La charte éditoriale garantit la conformité des contenus aux programmes officiels de l'Éducation nationale. en savoir plus

Les cours et exercices sont rédigés par l'équipe éditoriale de Kartable, composéee de professeurs certififés et agrégés. en savoir plus

Voir aussi
  • Cours : La description du mouvement et la deuxième loi de Newton
  • Méthode : Déterminer les composantes du vecteur position initiale d'un système
  • Méthode : Déterminer les composantes du vecteur vitesse initiale d'un système
  • Méthode : Déterminer les composantes du vecteur vitesse d'un système par dérivation
  • Méthode : Déterminer les composantes du vecteur accélération d'un système par dérivation
  • Méthode : Déterminer les composantes du vecteur accélération d'un système dans un repère mobile
  • Méthode : Représenter une force permettant à un système de rester en équilibre
  • Exercice : Justifier qualitativement la position du centre de masse d’un système
  • Exercice : Connaître les caractéristiques du vecteur vitesse dans un repère fixe
  • Exercice : Établir les coordonnées cartésiennes du vecteur vitesse à partir des coordonnées du vecteur position
  • Exercice : Tracer les vecteurs vitesse sur une chronophotographie
  • Exercice : Connaître les caractéristiques du vecteur accélération dans un repère fixe
  • Exercice : Établir les coordonnées cartésiennes du vecteur accélération à partir des coordonnées du vecteur vitesse
  • Exercice : Établir les coordonnées cartésiennes du vecteur accélération à partir des coordonnées du vecteur position
  • Exercice : Tracer les vecteurs accélération sur une chronophotographie
  • Exercice : Déduire la nature d'un mouvement à l'aide d'une chronophotographie
  • Exercice : Connaître les coordonnées des vecteurs vitesse et accélération dans le repère de Frenet pour un mouvement circulaire
  • Exercice : Déterminer le rayon d'une trajectoire circulaire à l'aide de la vitesse et de l'accélération
  • Exercice : Déterminer le système adapté à l'étude d'un mouvement
  • Exercice : Connaître les caractéristiques des référentiels terrestre, géocentrique et héliocentrique
  • Exercice : Déterminer le référentiel adapté à l'étude d'un système
  • Exercice : Nommer la trajectoire d'un système à l'aide d'une chronophotographie
  • Exercice : Caractériser la perte d'information d'une réduction d'un système à un point
  • Exercice : Décrire un mouvement dans le référentiel terrestre
  • Problème : Comprendre l'influence du référentiel sur la description du mouvement d'un système donné
  • Exercice : Dresser un bilan des forces s'appliquant sur un système
  • Exercice : Reconnaître une situation dans laquelle les forces se compensent
  • Exercice : Connaître les caractéristiques d'un référentiel galiléen
  • Exercice : Discuter qualitativement du caractère galiléen d’un référentiel donné
  • Exercice : Connaître la deuxième loi de Newton
  • Exercice : Déterminer la somme des forces appliquées au système à l'aide de la deuxième loi de Newton
  • Exercice type bac : Atterrissage du premier étage d'une fusée, Amérique du Sud 2022

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20263  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025