Utiliser le théorème de GaussMéthode

Afin de montrer qu'un nombre a exprimé en fonction de n est multiple d'un autre nombre noté b, on utilise le théorème de Gauss.

Démontrer que n\left(n+1\right)\left(n+2\right) est divisible par 6.

Etape 1

Décomposer le nombre b en produit de nombres premiers entre eux.

Si b n'est pas premier, on le décompose en produit de nombres premiers entre eux.

6 n'est pas premier. On écrit donc :

6=3\times2.

2 et 3 sont bien des nombres premiers entre eux.

Etape 2

Démontrer que chaque facteur de b divise a

On montre que chaque facteur de b divise a.

n\left(n+1\right) est le produit de deux entiers consécutifs, il est donc divisible par 2. Donc 2 divise n\left(n+1\right)\left(n+2\right) .

n\left(n+1\right)\left(n+2\right) est le produit de trois entiers consécutifs, il est donc divisible par 3.

On en déduit que 2 et 3 divisent bien n\left(n+1\right)\left(n+2\right).

Etape 3

Appliquer le corollaire du théorème de Gauss

D'après le corollaire du théorème de Gauss :

Si un entier naturel n est divisible par plusieurs entiers naturels premiers entre eux deux à deux, il est divisible par le produit de ces nombres.

Si un entier naturel a est divisible par plusieurs entiers naturels premiers entre eux deux à deux, il est divisible par le produit de ces nombres. Comme 2 et 3 divisent n\left(n+1\right)\left(n+2\right), 2\times3 divise n\left(n+1\right)\left(n+2\right).

Etape 4

Conclure

On en conclut que le nombre est divisible par le produit des facteurs déterminés ci-dessus.

On en conclut que n\left(n+1\right)\left(n+2\right) est divisible par 6.

Questions fréquentes

Quelles sont les matières disponibles sur Kartable ?

Sur Kartable, l'élève accède à toutes les matières principales de la primaire au lycée, y compris pour les spécialités et les options. Mathématiques, physique-chimie, SVT, sciences, français, littérature, histoire, géographie, enseignement moral et civique, SES, philosophie, anglais, allemand et espagnol.
Inscrivez-vous

Les cours sont-ils conformes aux programmes officiels de l'Education nationale ?

L'intégralité des cours sur Kartable est rédigée par des professeurs de l'Éducation nationale et est conforme au programme en vigueur, incluant la réforme du lycée de l'année 2019-2020.
Choisissez votre formule

L'élève peut-il accéder à tous les niveaux ?

Sur Kartable, l'élève peut accéder à toutes les matières dans tous les niveaux de son choix. Ainsi, il peut revenir sur les notions fondamentales qu'il n'aurait pas comprises les années précédentes et se perfectionner.
Plus d'info

Kartable est-il gratuit ?

L'inscription gratuite donne accès à 10 contenus (cours, exercices, fiches ou quiz). Pour débloquer l'accès illimité aux contenus, aux corrections d'exercices, mode hors-ligne et téléchargement en PDF, il faut souscrire à l'offre Kartable Premium.
Plus d'info

Qui rédige les cours de Kartable ?

L'intégralité des contenus disponibles sur Kartable est conçue par notre équipe pédagogique, composée de près de 200 enseignants de l'Éducation nationale que nous avons sélectionnés.
Afficher plus

Qu'est ce que le service Prof en ligne ?

L'option Prof en ligne est un service de chat en ligne entre élèves et professeurs. Notre Prof en ligne répond à toutes les questions sur les cours, exercices, méthodologie et aide au devoirs, pour toutes les classes et dans toutes les matières. Le service est ouvert du lundi au vendredi de 16h à 19h pour les membres ayant souscrit à l'option.
Choisissez votre formule