01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Terminale
  3. Physique-Chimie
  4. Problème : Etudier le mouvement d'un satellite géostationnaire

Etudier le mouvement d'un satellite géostationnaire Problème

On étudie le mouvement d'un satellite géostationnaire en orbite autour de la Terre. Pour ce faire, on se place dans le référentiel mobile lié au satellite, que l'on suppose galiléen.

Données : 

  • constante universelle de la gravitation : G = 6{,}67 \times 10^{-11} \text{ N.m}^2\text{kg}^{-2} ;
  • rayon de la Terre : R_T = 6\ 400 \text{ km} ;
  • période de rotation de la Terre autour d'elle même : T = 23 \text{ h } 56 \text{ min}, soit T =86 \ 160 \text{ s } ;
  • masse de la Terre : M_T = 5{,}9 \times 10^{24} \text{ kg}.
Repère lié à un satellite géostationnaire

Repère lié à un satellite géostationnaire

Quelle est la définition d'un satellite géostationnaire ?

Quelle est la période de révolution d'un satellite géostationnaire ?

On souhaite déterminer l'altitude et la vitesse d'un satellite géostationnaire.

a

Quelle est l'expression de la vitesse du satellite que l'on trouve en appliquant la deuxième loi de Newton ?

b

Quelle est la relation liant la vitesse v du satellite, le rayon r de son orbite et sa période de révolution T ?

c

À partir des deux expressions de la vitesse du satellite obtenues précédemment, quelle expression de l'altitude du satellite géostationnaire obtient-on ? 

d

Quelle est alors la valeur de l'altitude du satellite géostationnaire ? 

e

Connaissant l'altitude du satellite géostationnaire, quelle est sa vitesse ?

Voir aussi
  • Cours : Le mouvement d’un corps céleste dans un champ de gravitation
  • Méthode : Montrer que le mouvement d'un corps en orbite autour d'un astre est uniforme
  • Méthode : Obtenir l'expression de la vitesse d'un corps en orbite autour d'un astre
  • Méthode : Retrouver la troisième loi de Kepler à partir de l'expression de la vitesse du corps en orbite
  • Méthode : Utiliser la troisième loi de Kepler pour déterminer la période de révolution d'un corps en orbite
  • Méthode : Utiliser la troisième loi de Kepler pour déterminer le rayon d'une orbite
  • Méthode : Déterminer l'altitude d'un satellite géostationnaire
  • Exercice : Connaître la première loi de Kepler
  • Exercice : Différencier aphélie et périphélie
  • Exercice : Connaître la deuxième loi de Kepler
  • Exercice : Connaître la troisième loi de Kepler
  • Exercice : Déterminer la période de révolution d'un astre à l'aide de son demi grand axe
  • Exercice : Déterminer le demi grand axe de l'orbite d'une planète à l'aide de sa période de révolution
  • Exercice : Utiliser la troisième loi de Kepler
  • Exercice : Déterminer les coordonnées du vecteur accélération d’un système en mouvement circulaire dans un champ de gravitation newtonien
  • Exercice : Déterminer les coordonnées d'un vecteur vitesse initiale dans un repère de Frenet
  • Exercice : Déterminer l'équation de la vitesse d’un système en mouvement circulaire dans un champ de gravitation
  • Exercice : Utiliser le repère mobile pour déterminer les propriétés de la vitesse d'un astre
  • Problème : Etablir la troisième loi de Kepler dans le cas d'un mouvement circulaire
  • Exercice : Exploiter les équations horaires du mouvement pour déterminer une vitesse
  • Exercice : Exploiter les équations horaires du mouvement pour déterminer une position
  • Exercice : Établir l’équation de la trajectoire du mouvement d'un corps céleste dans un champ de gravitation
  • Exercice : Connaître les caractéristiques d'un satellite géostationnaire
  • Exercice type bac : Mesure de la masse de Jupiter et du Soleil, centres étrangers 2022

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20253  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025