01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Terminale S
  3. Mathématiques
  4. Exercice : Retrouver une solution particulière d'une équation diophantienne

Retrouver une solution particulière d'une équation diophantienne Exercice

Ce contenu a été rédigé par l'équipe éditoriale de Kartable.

Dernière modification : 05/02/2020 - Conforme au programme 2019-2020

D'après l'algorithme d'Euclide, quelle proposition correspond à une solution particulière de l'équation suivante ?

29x+17y=1

D'après l'algorithme d'Euclide, quelle proposition correspond à une solution particulière de l'équation suivante ?

7x+9y=1

D'après l'algorithme d'Euclide, quelle proposition correspond à une solution particulière de l'équation suivante ?

12x+7y=1

D'après l'algorithme d'Euclide, quelle proposition correspond à une solution particulière de l'équation suivante ?

-20x+9y=1

D'après l'algorithme d'Euclide, quelle proposition correspond à une solution particulière de l'équation suivante ?

37x+52y=1

D'après l'algorithme d'Euclide, quelle proposition correspond à une solution particulière de l'équation suivante ?

25x+7y=1

D'après l'algorithme d'Euclide, quelle proposition correspond à une solution particulière de l'équation suivante ?

17x+10y=1

D'après l'algorithme d'Euclide, quelle proposition correspond à une solution particulière de l'équation suivante ?

22x+5y=1

Exercice suivant

La charte éditoriale garantit la conformité des contenus aux programmes officiels de l'Éducation nationale. en savoir plus

Les cours et exercices sont rédigés par l'équipe éditoriale de Kartable, composéee de professeurs certififés et agrégés. en savoir plus

Voir aussi
  • Cours : Le PGCD, les théorèmes de Bézout et de Gauss
  • Quiz : Le PGCD, les théorèmes de Bézout et de Gauss
  • Méthode : Rechercher un PGCD
  • Méthode : Calculer un PGCD de deux nombres donnés en fonction d'une variable
  • Méthode : Montrer l'égalité de deux PGCD
  • Méthode : Résoudre une équation diophantienne dont une solution est connue
  • Méthode : Utiliser le théorème de Gauss
  • Exercice : Déterminer si deux nombres sont premiers entre eux
  • Exercice : Rechercher le PGCD de deux nombres
  • Exercice : Résoudre une équation diophantienne dont une solution est connue
  • Exercice : Montrer que deux PGCD sont égaux
  • Exercice : Utiliser le théorème de Gauss pour démontrer
  • Exercice : Résoudre une équation diophantienne avec le théorème de Bézout et l'algorithme d'Euclide

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20259  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025