01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Terminale
  3. Mathématiques
  4. Exercice : Démontrer la forme de l'équation cartésienne du plan normal au vecteur n et passant par le point A

Démontrer la forme de l'équation cartésienne du plan normal au vecteur n et passant par le point A Exercice

Dans le repère orthonormé \left(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k} \right), soit le plan \mathcal{P} admettant comme vecteur normal \overrightarrow{n}\begin{pmatrix} a \cr\cr b \cr\cr c \end{pmatrix} non nul, et le point A(x_0;y_0;z_0)  appartenant à \mathcal{P}.
Soit un point M(x;y;z), où x, y et z sont des réels.

À quelle condition M appartient-il au plan \mathcal{P} ?

On a montré que M appartient à \mathcal{P} si et seulement si le vecteur \overrightarrow{AM} est orthogonal au vecteur \overrightarrow{n}.

Comment peut-on traduire cette condition sous forme de produit scalaire ?

Quelles sont les coordonnées du vecteur \overrightarrow{AM} ?

On a montré que M appartient au plan \mathcal{P} si et seulement si \overrightarrow{AM}\cdot \overrightarrow{n} = 0.

Quelle est la bonne expression de cette égalité en fonction de a, b, c, x, y, z et d où d = -ax_0-by_0-cz_0 ?

Voir aussi
  • Cours : Représentation paramétrique et équation cartésienne
  • Quiz : Représentation paramétrique et équation cartésienne
  • Exercice : Connaître les caractéristiques de la représentation paramétrique d'une droite
  • Exercice : Déterminer si un point appartient à une droite à l'aide de sa représentation paramétrique
  • Exercice : Déterminer un vecteur directeur d'une droite à l'aide de sa représentation paramétrique
  • Exercice : Reconnaître graphiquement une droite à l'aide de sa représentation paramétrique
  • Exercice : Déterminer la représentation paramétrique d'une droite à l'aide d'un vecteur directeur et d'un point
  • Exercice : Déterminer la représentation paramétrique d'une droite à l'aide de deux points
  • Exercice : Déterminer un vecteur normal à un plan à l'aide de son équation cartésienne
  • Exercice : Déterminer l'équation cartésienne d'un plan à l'aide d'un point et d'un vecteur normal
  • Exercice : Reconnaître graphiquement un plan à l'aide de son équation cartésienne
  • Exercice : Déterminer les coordonnées du projeté orthogonal d’un point sur un plan donné par une équation cartésienne
  • Exercice : Déterminer les coordonnées du projeté orthogonal d’un point sur une droite donnée par un point et un vecteur directeur
  • Problème : Déterminer si trois vecteurs forment une base à l'aide d'un système d'équations linéaires
  • Problème : Déterminer les coordonnées d’un vecteur dans une base à l'aide d'un système d'équations linéaires
  • Problème : Etudier l'alignement de trois points à l'aide d'un système d'équations linéaires
  • Problème : Etudier la colinéarité de deux vecteurs à l'aide d'un système d'équations linéaires
  • Problème : Etudier le parallélisme de deux droites à l'aide d'un système d'équations linéaires
  • Problème : Etudier le parallélisme d'une droite et d'un plan à l'aide d'un système d'équations linéaires
  • Problème : Etudier le parallélisme de deux plans à l'aide d'un système d'équations linéaires
  • Problème : Etudier l'intersection de deux droites à l'aide d'un système d'équations linéaires
  • Problème : Etudier l'intersection d'une droite et d'un plan à l'aide d'un système d'équations linéaires
  • Problème : Etudier l'intersection de deux plans à l'aide d'un système d'équations linéaires
  • Problème : Etudier l'orthogonalité de deux droites à l'aide d'un système d'équations linéaires
  • Problème : Etudier l'orthogonalité d'une droite et d'un plan à l'aide d'un système d'équations linéaires
  • Problème : Etudier l'orthogonalité de deux plans à l'aide d'un système d'équations linéaires
  • Problème : Déterminer l’intersection de deux plans à l'aide de leur représentation paramétrique
  • Problème : Déterminer un vecteur orthogonal à deux vecteurs non colinéaires
  • Problème : Déterminer l'équation d’une sphère dont on connaît le centre et le rayon
  • Problème : Déterminer l'intersection d’une sphère et d’une droite
  • Exercice type bac : Amérique du Nord 2024, QCM de géométrie dans l'espace
  • Méthode : Déterminer une équation cartésienne de plan
  • Méthode : Déterminer une représentation paramétrique de droite dans l'espace
  • Méthode : Montrer qu'un point appartient à une droite
  • Méthode : Déterminer l'intersection de deux droites dans l'espace

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20256  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025