Résolution d'un problème graphique avec la fonction logarithmeExercice type bac

Soit f la fonction définie sur l'intervalle \left]0;+\infty\right[ par f\left(x\right)=\ln\left(x\right).

Pour tout réel a strictement positif, on définit sur \left]0;+\infty\right[ la fonction g_a par g_a\left(x\right)=ax^2.

On note \mathscr{C} la courbe représentative de la fonction f et \Gamma_a celle de la fonction g_a dans un repère du plan. Le but de l'exercice est d'étudier l'intersection des courbes \mathscr{C} et \Gamma_a suivant les valeurs du réel strictement positif a.

On a construit ci-dessous les courbes \mathscr{C}, \Gamma_{0{,}05}, \Gamma_{0{,}1}, \Gamma_{0{,}19} et \Gamma_{0{,}4}.

Quelles sont les différentes courbes sur le graphique ?

-

Dans quelle proposition a-t-on correctement utilisé le graphique pour émettre une conjecture sur le nombre de points d'intersection de \mathscr{C} et \Gamma_a selon les valeurs du réel a ?

Pour un réel a strictement positif, on considère la fonction h_a définie sur l'intervalle \left]0;+\infty\right[ par h_a\left(x\right)=\ln\left(x\right)-ax^2.

Dans quelle proposition justifie-t-on correctement que x est l'abscisse d'un point M appartenant à l'intersection de \mathscr{C} et \Gamma_a si et seulement si h_a\left(x\right)=0 ?

a

On admet que la fonction h_a est dérivable sur \left]0;+\infty\right[, et on note h_a' la dérivée de h_a sur cet intervalle.

Le tableau de variations de la fonction h_a est donné ci-dessous.

Dans quelle proposition justifie-t-on correctement le signe de h_a'\left(x\right) pour x appartenant à \left]0;+\infty\right[ ?

-
b

Rappeler la limite de \dfrac{\ln\left(x\right)}{x} en +\infty.

Dans quelle proposition en déduit-on la limite de la fonction h_a en +\infty ?

Dans cette question et uniquement dans cette question, on suppose que a=0{,}1.

a

Dans quelle proposition justifie-t-on correctement que dans l'intervalle \left]0;\dfrac{1}{\sqrt{0{,}2}}\right[, l'équation h_{0{,}1}\left(x\right)=0 admet une unique solution ?

On admet que cette équation a aussi une seule solution dans l'intervalle \left]\dfrac{1}{\sqrt{0{,}2}};+\infty\right[.

b

Quel est le nombre de points d'intersection de \mathscr{C} et de \Gamma_{0{,}1} ?

Dans cette question, et uniquement dans cette question, on suppose que a=\dfrac{1}{2e}.

a

Quelle est la valeur du maximum de h_{\frac{1}{2e}} ?

b

Dans quelle proposition en déduit-on le nombre de points d'intersection des courbes \mathscr{C} et \Gamma_{\frac{1}{2e}} ?

Quelles sont les valeurs de a pour lesquelles \mathscr{C} et \Gamma_a n'ont aucun point d'intersection ?

Exercice suivant

Questions fréquentes

Quelles sont les matières disponibles sur Kartable ?

Sur Kartable, l'élève accède à toutes les matières principales de la primaire au lycée, y compris pour les spécialités et les options. Mathématiques, physique-chimie, SVT, sciences, français, littérature, histoire, géographie, enseignement moral et civique, SES, philosophie, anglais, allemand et espagnol.
Inscrivez-vous

Les cours sont-ils conformes aux programmes officiels de l'Education nationale ?

L'intégralité des cours sur Kartable est rédigée par des professeurs de l'Éducation nationale et est conforme au programme en vigueur, incluant la réforme du lycée de l'année 2019-2020.
Choisissez votre formule

L'élève peut-il accéder à tous les niveaux ?

Sur Kartable, l'élève peut accéder à toutes les matières dans tous les niveaux de son choix. Ainsi, il peut revenir sur les notions fondamentales qu'il n'aurait pas comprises les années précédentes et se perfectionner.
Plus d'info

Kartable est-il gratuit ?

L'inscription gratuite donne accès à 10 contenus (cours, exercices, fiches ou quiz). Pour débloquer l'accès illimité aux contenus, aux corrections d'exercices, mode hors-ligne et téléchargement en PDF, il faut souscrire à l'offre Kartable Premium.
Plus d'info

Qui rédige les cours de Kartable ?

L'intégralité des contenus disponibles sur Kartable est conçue par notre équipe pédagogique, composée de près de 200 enseignants de l'Éducation nationale que nous avons sélectionnés.
Afficher plus

Qu'est ce que le service Prof en ligne ?

L'option Prof en ligne est un service de chat en ligne entre élèves et professeurs. Notre Prof en ligne répond à toutes les questions sur les cours, exercices, méthodologie et aide au devoirs, pour toutes les classes et dans toutes les matières. Le service est ouvert du lundi au vendredi de 16h à 19h pour les membres ayant souscrit à l'option.
Choisissez votre formule