Se connecter
ou

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. En savoir plus : Conditions générales d'utilisation

J'ai compris

Déterminer un intervalle de fluctuation dans le cadre d'une loi binomiale

Difficulté
5-10 MIN
8 / 8

Un éthylotest est efficace à 90% pour identifier si quelqu’un est au-dessus ou non de la limite légale d’alcoolémie pour conduire.
On considère la variable aléatoire X associée au nombre de tests affichant un résultat correct. X suit la loi binomiale de paramètre \(\displaystyle{n=100}\) et \(\displaystyle{p=0,90}\).

On donne ci-contre un extrait de la table des probabilités cumulées \(\displaystyle{p\left(X\leqslant k\right)}\).

k\(\displaystyle{p\left(X\leqslant k\right)}\)
820,010
830,0206
840,0399
850,0726
......
940,9424
950,9763
960,9922
1

Déterminer le plus petit entier a, tel que \(\displaystyle{p\left(X\leqslant a\right)\gt0,025}\).

2

Déterminer le plus petit entier b tel que \(\displaystyle{p\left(X\leqslant b\right)\geqslant 0,975}\).

3

Déterminer l'intervalle de fluctuation à 95% de la fréquence.

Précédent

Identifie-toi pour voir plus de contenu

Pour avoir accès à l'intégralité des contenus de Kartable et pouvoir naviguer en toute tranquillité,
connecte-toi à ton compte. Et si tu n'es toujours pas inscrit, il est grand temps d'y remédier.