01 76 38 08 47
Logo Kartable
AccueilRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Seconde
  3. Mathématiques
  4. Méthode : Construire un point par symétrie centrale

Construire un point par symétrie centrale Méthode

Sommaire

1Tracer la droite passant par le point et le centre de symétrie 2Mesurer la longueur 3Placer le symétrique

Le symétrique d'un point A par rapport à une symétrie de centre O peut se déterminer à l'aide d'une règle et d'un compas.

Construire, à l'aide de la règle graduée et de l'équerre, l'image A' de A par la symétrie de centre O.

-
Etape 1

Tracer la droite passant par le point et le centre de symétrie

On trace la droite passant par A et le centre de symétrie O.

On trace la droite passant par A et le centre de symétrie O :

-
Etape 2

Mesurer la longueur

À l'aide d'un compas, on détermine la longueur AO sur la droite.

À l'aide d'un compas, on détermine la longueur AO.

Etape 3

Placer le symétrique

En conservant l'écartement du compas, on place le point A' sur la droite \left(AO\right) tel que OA' = AO.

On place alors le point A' sur la droite \left(AO\right) tel que OA' = AO. On obtient le symétrique de A par rapport à O.

-
Voir aussi
  • Cours : Résoudre des problèmes de géométrie
  • Exercice : Tracer le projeté orthogonal d'un point sur une droite
  • Exercice : Montrer qu'un point est le milieu d'un segment
  • Exercice : Tracer les hauteurs d'un triangle
  • Exercice : Tracer les médianes d'un triangle
  • Exercice : Différencier orthocentre et centre de gravité
  • Exercice : Tracer les médiatrices d'un triangle
  • Exercice : Tracer les bissectrices d'un triangle
  • Exercice : Différencier cercle circonscrit et cercle inscrit
  • Exercice : Différencier hauteur, médiane, médiatrice et bissectrices
  • Exercice : Démontrer qu'un triangle est rectangle à l'aide du théorème de Pythagore
  • Exercice : Calculer une longueur dans un triangle rectangle à l'aide du théorème de Pythagore
  • Exercice : Démontrer qu'un triangle est rectangle à l'aide d'une médiane
  • Exercice : Calculer une longueur dans un triangle rectangle à l'aide d'une médiane
  • Exercice : Démontrer qu'un triangle est rectangle à l'aide du cercle circonscrit
  • Exercice : Calculer une longueur dans un triangle rectangle à l'aide du cercle circonscrit
  • Exercice : Calculer un angle de triangle rectangle à l'aide des relations de trigonométrie
  • Exercice : Calculer la longueur d'un côté de triangle rectangle à l'aide des relations de trigonométrie
  • Exercice : Démontrer la relation cos²(a)+sin²(a)=1 dans un triangle rectangle
  • Problème : Résoudre un problème d'optimisation de triangle
  • Problème : Étudier la formule d'Al-Kashi
  • Exercice : Calculer l'aire d'un triangle
  • Exercice : Calculer le volume d'une pyramide
  • Exercice : Différencier parallélogramme, losange, rectangle et carré
  • Exercice : Calculer une longueur dans un quadrilatère
  • Exercice : Calculer un angle dans un quadrilatère
  • Problème : Démontrer la particularité d'un quadrilatère
  • Exercice : Calculer l'aire d'un quadrilatère
  • Exercice : Calculer le volume d'un parallélépipède
  • Problème : Résoudre un problème d'optimisation de quadrilatère
  • Exercice : Calculer l'aire d'un disque
  • Exercice : Calculer le volume d'une sphère
  • Problème : Résoudre un problème d'optimisation de cercle
  • Quiz : Résoudre des problèmes de géométrie
  • Méthode : Construire un point par symétrie axiale
  • Méthode : Reconnaître un quadrilatère particulier
  • Méthode : Tracer les droites remarquables d'un triangle
  • Méthode : Reconnaître un point remarquable du triangle
  • Méthode : Démontrer qu'un triangle est rectangle
  • Méthode : Calculer l'aire d'un triangle
  • Méthode : Calculer l'aire d'un parallélogramme
  • Méthode : Calculer l'aire d'un disque
  • Méthode : Calculer l'aire d'un trapèze

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  17720  avis

0.00
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2023