01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Seconde
  3. Mathématiques
  4. Exercice : Etudier les variations d'une fonction polynôme du second degré

Etudier les variations d'une fonction polynôme du second degré Exercice

Ce contenu a été rédigé par l'équipe éditoriale de Kartable.

Dernière modification : 06/10/2020 - Conforme au programme 2018-2019

Quel est le tableau de variations de la fonction f suivante sur \mathbb{R} ?

f\left(x\right)=-4\left(x-2\right)^{2}+2

Quel est le tableau de variations de la fonction f suivante sur \mathbb{R} ?

f\left(x\right)=-2\left(x+1\right)^{2}+1

Quel est le tableau de variations de la fonction f suivante sur \mathbb{R} ?

f\left(x\right)=3\left(x-3\right)^{2}-4

Quel est le tableau de variations de la fonction f suivante sur \mathbb{R} ?

f\left(x\right)=4\left(x+3\right)^{2}-1

Quel est le tableau de variations de la fonction f suivante sur \mathbb{R} ?

f\left(x\right)=\left(x-1\right)^{2}+5

La charte éditoriale garantit la conformité des contenus aux programmes officiels de l'Éducation nationale. en savoir plus

Les cours et exercices sont rédigés par l'équipe éditoriale de Kartable, composéee de professeurs certififés et agrégés. en savoir plus

Voir aussi
  • Cours : Les fonctions usuelles
  • Quiz : Les fonctions usuelles
  • Méthode : Déterminer l'expression d'une fonction affine
  • Méthode : Tracer la représentation graphique d'une fonction affine
  • Méthode : Donner le sens de variation d'une fonction affine
  • Méthode : Utiliser une fonction de référence pour comparer deux nombres
  • Méthode : Donner le sens de variation et l'extremum d'une fonction trinôme du second degré
  • Méthode : Représenter une fonction polynôme du second degré
  • Méthode : Décomposer une fonction en un enchaînement de fonctions usuelles
  • Méthode : Reconnaître une fonction homographique
  • Méthode : Donner le domaine de définition d'une fonction homographique
  • Exercice : Déterminer le coefficient directeur d'une fonction affine à l'aide de son expression
  • Exercice : Déterminer l'expression d'une fonction affine à partir de l'image de deux réels
  • Exercice : Déterminer l'expression d'une fonction affine à partir de sa droite représentative
  • Exercice : Déterminer les antécédents d'un nombre par la fonction carré
  • Exercice : Déterminer les images et antécédents d'intervalles par la fonction carré
  • Exercice : Utiliser la fonction carré pour comparer deux nombres
  • Exercice : Donner des images et des antécédents par la fonction inverse
  • Exercice : Résoudre une équation ou une inéquation grâce à la courbe de la fonction inverse
  • Exercice : Utiliser la fonction inverse pour comparer deux nombres
  • Exercice : Représenter graphiquement une fonction polynôme du second degré
  • Exercice : Déterminer la forme factorisée d'un trinôme du second degré
  • Exercice : Déterminer la forme développée d'un trinôme du second degré
  • Exercice : Reconnaître une fonction homographique
  • Exercice : Donner le domaine de définition d'une fonction homographique
  • Exercice : Déterminer le sens de variation d'une fonction homographique
  • Problème : Utiliser les fonctions affines pour résoudre un problème concret
  • Problème : Choisir la forme appropriée d'une fonction polynôme du second degré
  • Problème : Utiliser un trinôme du second degré pour résoudre un problème d'aire
  • Problème : Etudier des variations d'une fonction et reconnaissance de l'enchaînement d'opérations
  • Problème : Déterminer les images et antécédents d'un intervalle de la fonction carré
  • Problème : Factoriser un polynôme

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20259  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025