01 76 38 08 47
Logo Kartable
AccueilRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Seconde
  3. Mathématiques
  4. Méthode : Décomposer une fonction en un enchaînement de fonctions usuelles

Décomposer une fonction en un enchaînement de fonctions usuelles Méthode

Sommaire

1Repérer la première opération 2Identifier l'opération suivante 3Identifier dans l'ordre toutes les autres opérations

Les fonctions usuelles sont les fonctions affines, la fonction carrée, la fonction inverse et les fonctions polynômes de degré 2. Certaines fonctions peuvent être écrites comme un enchaînement de fonctions usuelles de la classe de 2nde.

On considère la fonction f définie sur \left] -1 ; +\infty \right[ par :

f\left(x\right)= \dfrac{2}{\left(x+1\right)^2} -3

Décomposer cette fonction en un enchaînement de fonctions usuelles.

Etape 1

Repérer la première opération

Dans l'expression de f\left(x\right), on repère l'endroit où se situe x.

On détermine quelle opération il subit en premier. Il y a plusieurs possibilités :

  • x \mapsto ax+b
  • x \mapsto x^2
  • x \mapsto \dfrac{1}{x}
  • x \mapsto ax^2+bx+c

On remarque que le x est situé au dénominateur. La première opération qu'il subit l'addition de 1 :

x \mapsto x+1

Etape 2

Identifier l'opération suivante

On considère désormais l'expression déterminée précédemment. On détermine quelle est l'opération suivante que cette expression subit.

Par exemple, si la première opération est x \mapsto ax+b et qu'ensuite l'expression \left(ax+b\right) est élevée au carré, on écrit :

x \mapsto ax+b \mapsto \left(ax+b\right)^2

Ensuite l'expression \left(x+1\right) est élevée au carré. Cela donne :

x \mapsto x+1 \mapsto \left(x+1\right)^2

Etape 3

Identifier dans l'ordre toutes les autres opérations

On considère ensuite l'expression issue de la deuxième opération et on détermine l'opération que celle-ci subit par la suite.

On continue ce processus jusqu'à avoir construit la fonction en intégralité.

On notera le résultat par un enchaînement :

x \mapsto u\left(x\right) \mapsto v\left(x\right) \mapsto w\left(x\right) \mapsto f\left(x\right)

On identifie les opérations suivantes :

  • \left(x+1\right)^2 est passée à l'inverse \left(x+1\right)^2 \mapsto \dfrac{1}{\left(x+1\right)^2}.
  • \dfrac{1}{\left(x+1\right)^2} est multipliée par 2 et on retire 3 au résultat.

On obtient finalement :

x \mapsto x+1 \mapsto \left(x+1\right)^2 \mapsto \dfrac{1}{\left(x+1\right)^2} \mapsto 2 \times \dfrac{1}{\left(x+1\right)^2} -3

Voir aussi
  • Cours : Se constituer un répertoire de fonctions de référence
  • Méthode : Utiliser une fonction de référence pour comparer deux nombres
  • Exercice : Connaître les caractéristiques d'une fonction affine
  • Exercice : Déterminer si une fonction est une fonction affine à l'aide de son expression
  • Exercice : Déterminer le coefficient directeur d'une fonction affine à l'aide de son expression
  • Exercice : Déterminer l'ordonnée à l'origine d'une fonction affine à l'aide de son expression
  • Exercice : Lire le coefficient directeur d'une fonction affine sur sa courbe représentative
  • Exercice : Déterminer graphiquement l'ordonnée à l'origine de la courbe représentative d'une fonction affine
  • Exercice : Associer expression et courbe représentative d'une fonction affine
  • Exercice : Déterminer la monotonie d'une fonction affine à l'aide de son expression
  • Exercice : Associer expression et tableau de variation d'une fonction affine
  • Exercice : Connaître les caractéristiques d'une fonction carré
  • Exercice : Déterminer si une fonction est une fonction carré à l'aide de son expression
  • Exercice : Associer expression et courbe représentative d'une fonction carré
  • Exercice : Déterminer les variations d'une fonction carré à l'aide de son expression
  • Exercice : Associer expression et tableau de variation d'une fonction carré
  • Exercice : Calculer une valeur à l'aide de la parité de la fonction carré
  • Exercice : Appliquer la fonction carré sur une inéquation
  • Exercice : Résoudre une inéquation du type x2<a ou x2>a
  • Exercice : Connaître les caractéristiques d'une fonction racine carrée
  • Exercice : Déterminer si une fonction est une fonction racine carrée à l'aide de son expression
  • Exercice : Déterminer le domaine de définition d'une fonction racine carrée
  • Exercice : Associer expression et courbe représentative d'une fonction racine carrée
  • Exercice : Déterminer les variations d'une fonction racine carrée à l'aide de son expression
  • Exercice : Associer expression et tableau de variation d'une fonction racine carrée
  • Exercice : Appliquer la fonction racine carrée à une inégalité
  • Problème : Explorer la relation entre la fonction carré et la fonction racine carrée
  • Exercice : Connaître les caractéristiques d'une fonction cube
  • Exercice : Déterminer si une fonction est une fonction cube à l'aide de son expression
  • Exercice : Associer expression et courbe représentative d'une fonction cube
  • Exercice : Déterminer les variations d'une fonction cube à l'aide de son expression
  • Exercice : Associer expression et tableau de variation d'une fonction cube
  • Exercice : Calculer une valeur à l'aide de l'imparité de la fonction cube
  • Exercice : Appliquer la fonction cube sur une inéquation
  • Exercice : Utiliser la comparaison entre x, x^2 et x^3 dans une inéquation
  • Problème : Étudier la position relative des courbes d’équation y=x, y=x^2, y=x^3 pour x>=0
  • Exercice : Connaître les caractéristiques d'une fonction inverse
  • Exercice : Déterminer si une fonction est une fonction inverse à l'aide de son expression
  • Exercice : Déterminer le domaine de définition d'une fonction inverse
  • Exercice : Associer expression et courbe représentative d'une fonction inverse
  • Exercice : Déterminer les variations d'une fonction inverse à l'aide de son expression
  • Méthode : Calculer l'image d'un réel par une fonction
  • Exercice : Associer expression et tableau de variation d'une fonction inverse
  • Méthode : Déterminer graphiquement le domaine de définition d'une fonction
  • Exercice : Appliquer la fonction inverse à une inégalité
  • Exercice : Résoudre une inéquation du type 1/x<a
  • Quiz : Se constituer un répertoire de fonctions de référence
  • Méthode : Déterminer les antécédents d'un nombre par une fonction par le calcul
  • Méthode : Lire graphiquement images et antécédents sur la courbe représentative d'une fonction
  • Méthode : Tracer la courbe représentative d'une fonction
  • Méthode : Déterminer l'appartenance d'un point à une courbe
  • Méthode : Rechercher algébriquement le domaine de définition d'une fonction
  • Méthode : Construire le tableau de variations d'une fonction
  • Méthode : Déterminer l'expression d'une fonction affine
  • Méthode : Tracer la représentation graphique d'une fonction affine
  • Méthode : Donner le sens de variation d'une fonction affine
  • Méthode : Donner le sens de variation et l'extremum d'une fonction trinôme du second degré
  • Méthode : Représenter une fonction polynôme du second degré

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  17720  avis

0.00
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2023