01 76 38 08 47
Logo Kartable
AccueilRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Seconde
  3. Mathématiques
  4. Méthode : Rechercher algébriquement le domaine de définition d'une fonction

Rechercher algébriquement le domaine de définition d'une fonction Méthode

Sommaire

1Regarder s'il y a un dénominateur ou une racine carrée 2Identifier les éventuelles valeurs interdites 3Conclure

Le domaine de définition d'une fonction f est l'ensemble des réels x tel que f\left(x\right) existe.

On considère la fonction f dont une expression est :

f\left(x\right) = 3x+1-\dfrac{5}{2-x}

Déterminer le domaine de définition de f.

Etape 1

Regarder s'il y a un dénominateur ou une racine carrée

Si l'expression donnée de la fonction ne comporte ni racine carrée ni dénominateur, alors il s'agit de l'expression d'une fonction affine ou d'une fonction polynôme définie sur \mathbb{R}.

Sinon, il peut y avoir une ou plusieurs valeurs interdites.

Les seules opérations "restrictives" que l'on peut rencontrer en classe de 2nde dans les expressions des fonctions sont la racine carrée et la division.

L'expression donnée pour la fonction f comporte un dénominateur. Il peut donc y avoir une ou plusieurs valeur(s) interdite(s).

Etape 2

Identifier les éventuelles valeurs interdites

  • Si l'expression de la fonction comporte une racine carrée, cette fonction est définie lorsque l'expression dans la racine carrée est positive ou nulle.
  • Si l'expression de la fonction comporte un dénominateur, cette fonction est définie lorsque le dénominateur est non nul.

Le dénominateur d'une fraction ne peut pas être égal à 0.  f\left(x\right) existe si et seulement si 2-x \neq 0.

On résout donc dans \mathbb{R} l'équation 2-x=0 pour déterminer les éventuelles valeurs interdites.

Pour tout réel x :

2-x=0 \Leftrightarrow x=2

L'expression donnée admet donc une valeur interdite : 2.

Etape 3

Conclure

Le domaine de définition de la fonction est alors \mathbb{R} privé de cette/ces valeur(s) interdite(s).

Le domaine de définition de la fonction f est D_f = \mathbb{R}\backslash\left\{ 2 \right\}.

Voir aussi
  • Cours : Se constituer un répertoire de fonctions de référence
  • Méthode : Utiliser une fonction de référence pour comparer deux nombres
  • Exercice : Connaître les caractéristiques d'une fonction affine
  • Exercice : Déterminer si une fonction est une fonction affine à l'aide de son expression
  • Exercice : Déterminer le coefficient directeur d'une fonction affine à l'aide de son expression
  • Exercice : Déterminer l'ordonnée à l'origine d'une fonction affine à l'aide de son expression
  • Exercice : Lire le coefficient directeur d'une fonction affine sur sa courbe représentative
  • Exercice : Déterminer graphiquement l'ordonnée à l'origine de la courbe représentative d'une fonction affine
  • Exercice : Associer expression et courbe représentative d'une fonction affine
  • Exercice : Déterminer la monotonie d'une fonction affine à l'aide de son expression
  • Exercice : Associer expression et tableau de variation d'une fonction affine
  • Exercice : Connaître les caractéristiques d'une fonction carré
  • Exercice : Déterminer si une fonction est une fonction carré à l'aide de son expression
  • Exercice : Associer expression et courbe représentative d'une fonction carré
  • Exercice : Déterminer les variations d'une fonction carré à l'aide de son expression
  • Exercice : Associer expression et tableau de variation d'une fonction carré
  • Exercice : Calculer une valeur à l'aide de la parité de la fonction carré
  • Exercice : Appliquer la fonction carré sur une inéquation
  • Exercice : Résoudre une inéquation du type x2<a ou x2>a
  • Exercice : Connaître les caractéristiques d'une fonction racine carrée
  • Exercice : Déterminer si une fonction est une fonction racine carrée à l'aide de son expression
  • Exercice : Déterminer le domaine de définition d'une fonction racine carrée
  • Exercice : Associer expression et courbe représentative d'une fonction racine carrée
  • Exercice : Déterminer les variations d'une fonction racine carrée à l'aide de son expression
  • Exercice : Associer expression et tableau de variation d'une fonction racine carrée
  • Exercice : Appliquer la fonction racine carrée à une inégalité
  • Problème : Explorer la relation entre la fonction carré et la fonction racine carrée
  • Exercice : Connaître les caractéristiques d'une fonction cube
  • Exercice : Déterminer si une fonction est une fonction cube à l'aide de son expression
  • Exercice : Associer expression et courbe représentative d'une fonction cube
  • Exercice : Déterminer les variations d'une fonction cube à l'aide de son expression
  • Exercice : Associer expression et tableau de variation d'une fonction cube
  • Exercice : Calculer une valeur à l'aide de l'imparité de la fonction cube
  • Exercice : Appliquer la fonction cube sur une inéquation
  • Exercice : Utiliser la comparaison entre x, x^2 et x^3 dans une inéquation
  • Problème : Étudier la position relative des courbes d’équation y=x, y=x^2, y=x^3 pour x>=0
  • Exercice : Connaître les caractéristiques d'une fonction inverse
  • Exercice : Déterminer si une fonction est une fonction inverse à l'aide de son expression
  • Exercice : Déterminer le domaine de définition d'une fonction inverse
  • Exercice : Associer expression et courbe représentative d'une fonction inverse
  • Exercice : Déterminer les variations d'une fonction inverse à l'aide de son expression
  • Méthode : Calculer l'image d'un réel par une fonction
  • Exercice : Associer expression et tableau de variation d'une fonction inverse
  • Méthode : Déterminer graphiquement le domaine de définition d'une fonction
  • Exercice : Appliquer la fonction inverse à une inégalité
  • Exercice : Résoudre une inéquation du type 1/x<a
  • Quiz : Se constituer un répertoire de fonctions de référence
  • Méthode : Déterminer les antécédents d'un nombre par une fonction par le calcul
  • Méthode : Lire graphiquement images et antécédents sur la courbe représentative d'une fonction
  • Méthode : Tracer la courbe représentative d'une fonction
  • Méthode : Déterminer l'appartenance d'un point à une courbe
  • Méthode : Construire le tableau de variations d'une fonction
  • Méthode : Déterminer l'expression d'une fonction affine
  • Méthode : Tracer la représentation graphique d'une fonction affine
  • Méthode : Donner le sens de variation d'une fonction affine
  • Méthode : Donner le sens de variation et l'extremum d'une fonction trinôme du second degré
  • Méthode : Représenter une fonction polynôme du second degré
  • Méthode : Décomposer une fonction en un enchaînement de fonctions usuelles

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  17720  avis

0.00
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2023