01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Première
  3. Mathématiques
  4. Exercice : Déterminer le sinus d'un nombre à partir de son cosinus, et réciproquement

Déterminer le sinus d'un nombre à partir de son cosinus, et réciproquement Exercice

Soit x\in\left[ 0,\dfrac{\pi}{2} \right] . On sait que \sin\left(x\right)=\dfrac{1+\sqrt{3}}{3}.

Quelle est la valeur de \cos\left(x\right) ?

Soit x\in\left[ -\pi,0 \right] . On sait que \cos\left(x\right)=\dfrac{\sqrt{17}-3}{4} ?

Quelle est la valeur de \sin\left(x\right) ?

Soit x\in\left[ \dfrac{\pi}{2},\pi\right] . On sait que \sin\left(x\right)=\dfrac{1}{3}.

Quelle est la valeur de \cos\left(x\right) ?

Soit x\in\left[ 0,\dfrac{\pi}{2} \right] . On sait que \cos\left(x\right)=\dfrac{\sqrt{2+\sqrt{2}}}{2}.

Quelle est la valeur de \sin\left(x\right) ?

Soit x\in\left[ -\pi,-\dfrac{\pi}{2} \right] . On sait que \sin\left(x\right)=-\dfrac{7}{8}.

Quelle est la valeur de \cos\left(x\right) ?

Soit x\in\left[ -\pi,0 \right] . On sait que \cos\left(x\right)=\dfrac{1+\sqrt{5}}{4}.

Quelle est la valeur de \sin\left(x\right) ?

Soit x\in\left[ -\dfrac{\pi}{2},0 \right] . On sait que \sin\left(x\right)=-\dfrac{1}{4}.

Quelle est la valeur de \cos\left(x\right) ?

Exercice suivant
Voir aussi
  • Cours : Trigonométrie
  • Exercice : Connaître les caractéristiques du cercle trigonométrique
  • Exercice : Convertir un angle de degrés à radians
  • Exercice : Convertir un angle de radians à degrés
  • Exercice : Calculer la longueur d'un arc de cercle trigonométrique à l'aide de la valeur de l'angle en degrés
  • Exercice : Placer les angles classiques en radians sur le cercle trigonométrique
  • Exercice : Lire la valeur d'un angle multiple des angles classiques sur le cercle trigonométrique à l'aide de sa mesure en radians
  • Exercice : Placer sur le cercle trigonométrique le point associé à un réel
  • Exercice : Identifier les points qui ont la même image sur le cercle trigonométrique
  • Exercice : Déterminer la mesure principale d'un angle
  • Exercice : Connaître les valeurs du cosinus et du sinus des angles classiques
  • Exercice : Démontrer la valeur de sin(pi/4)
  • Exercice : Démontrer la valeur de cos(pi/3)
  • Exercice : Démontrer la valeur de sin(pi/3)
  • Exercice : Connaître les relations entre le cosinus et le sinus
  • Exercice : Calculer un sinus ou un cosinus à l'aide de leurs propriétés de symétrie
  • Exercice : Calculer un sinus ou un cosinus à l'aide de leurs propriétés de périodicité
  • Exercice : Calculer un sinus ou un cosinus à l'aide des relations entre cosinus et sinus
  • Exercice : Réduire une expression trigonométrique
  • Exercice : Connaître les caractéristiques de la fonction cosinus
  • Exercice : Connaître les caractéristiques de la fonction sinus
  • Exercice : Résoudre une équation trigonométrique du type cos(x)=y
  • Exercice : Résoudre une équation trigonométrique du type cos(ax+b)=y
  • Exercice : Résoudre une équation trigonométrique du type sin(x)=y
  • Exercice : Résoudre une équation trigonométrique du type sin(ax+b)=y
  • Exercice : Résoudre une équation trigonométrique du type cos(ax+b)=sin(cx+d)
  • Exercice : Résoudre une inéquation trigonométrique du type cos(x)y
  • Exercice : Résoudre une inéquation trigonométrique du type cos(ax+b)y
  • Exercice : Résoudre une inéquation trigonométrique du type sin(x)y
  • Exercice : Résoudre une inéquation trigonométrique du type sin(ax+b)y
  • Exercice : Résoudre une inéquation trigonométrique du type cos(ax+b)sin(cx+d)
  • Quiz : Trigonométrie
  • Méthode : Déterminer le cosinus et le sinus d'un angle associé
  • Méthode : Résoudre une équation trigonométrique du type cos(x)=a
  • Méthode : Résoudre une équation trigonométrique du type sin(x)=a
  • Méthode : Calculer un cosinus ou un sinus à l'aide de la calculatrice
  • Méthode : Déterminer un angle dont on connaît le cosinus ou le sinus à l'aide de la calculatrice
  • Méthode : Placer sur le cercle trigonométrique le point associé à un réel quelconque
  • Méthode : Montrer que deux réels ont la même image sur le cercle
  • Méthode : Rechercher la mesure principale d'un angle
  • Méthode : Ecrire un algorithme permettant de calculer la mesure principale d'un angle
  • Méthode : Déterminer le sinus ou le cosinus des angles associés
  • Méthode : Déterminer le cosinus d'un angle à partir de son sinus, et réciproquement
  • Méthode : Donner les solutions d'une équation trigonométrique dans un intervalle donné
  • Méthode : Résoudre une équation de type cos(kx)=a

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  18441  avis

0.00
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2023