Déterminer l'axe de symétrie d'une parabole représentative d'une fonction polynôme du second degré à l'aide de son équationExercice

Déterminer l'axe de symétrie de la parabole représentative des polynômes du second degré f suivants.

Soit f la fonction définie sur \mathbb{R} par :

\forall x \in \mathbb{R}, f(x)=4x^2−8x+4

Soit f la fonction définie sur \mathbb{R} par :

\forall x \in \mathbb{R}, f(x)=x^2+3x+1

Soit f la fonction définie sur \mathbb{R} par :

\forall x \in \mathbb{R}, f(x)=-x^2+\frac{1}{2}x−1

Soit f la fonction définie sur \mathbb{R} par :

\forall x \in \mathbb{R}f(x)=-\frac{1}{4}x^2+\frac{2}{3}x+1

Soit f la fonction définie sur \mathbb{R} par :

\forall x \in \mathbb{R}f(x)=x^2+\sqrt{2}x+1