01 76 38 08 47
Logo Kartable
AccueilRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Première
  3. Mathématiques
  4. Problème : Estimer pi avec la méthode de Monte-Carlo

Estimer pi avec la méthode de Monte-Carlo Problème

La méthode de Monte-Carlo est une méthode faisant intervenir des tirages aléatoires pour estimer une valeur numérique. 

On chercher à estimer la valeur de \pi. 

Pour cela, on utilise la figure suivante : 

-

Quelle est l'équation du cercle de centre (0;0) et de rayon 1 ? 

Quelle est la fonction f qui permet de caractériser le quart de cercle C de la figure de l'énoncé ? 

-

On admet que la probabilité qu'un point soit dans une surface (incluse dans le carré) est égale au rapport de l'aire de cette surface sur celle du carré.

Soit un point I dont les coordonnées sont tirées au hasard dans le carré ABCD.

On note E l'événement : « Le point I est dans le quart de cercle ». 

Quelle est la relation entre la probabilité de E et le nombre \pi ? 

Un algorithme a tiré 10 000 points au hasard dans le carré ABCD et a compté que 7 891 points étaient dans le quart de cercle C. 

Comment peut-on estimer \pi grâce à ce résultat ? 

Voir aussi
  • Cours : Probabilités conditionnelles et indépendance
  • Quiz : Probabilités conditionnelles et indépendance
  • Exercice : Définir l'univers d'une expérience
  • Exercice : Connaître la définition d'une probabilité conditionnelle
  • Exercice : Reconnaître une probabilité conditionnelle expliquée en langage naturel
  • Exercice : Différencier faux positif, faux négatif, vrai positif et vrai négatif
  • Exercice : Calculer une probabilité conditionnelle à l'aide des probabilités de l'intersection et de l'événement
  • Exercice : Calculer une probabilité conditionnelle à l'aide de la formule de Bayes
  • Exercice : Calculer une probabilité avec un arbre pondéré en utilisant la règle du produit des probabilités inscrites sur les branches
  • Exercice : Calculer une probabilité avec un arbre pondéré en utilisant la règle de la somme des probabilités inscrites sur les branches issues d'un même nœud
  • Exercice : Déterminer si deux événements sont indépendants à l'aide de la probabilité de leur intersection
  • Exercice : Calculer une probabilité conditionnelle dans le cas d'événements indépendants
  • Exercice : Extraire les probabilités d'un problème en langage naturel
  • Exercice : Déterminer la complétude de systèmes d'événements
  • Exercice : Calculer une probabilité à l'aide de la formule des probabilités totales pour une partition à deux événements
  • Exercice : Calculer une probabilité à l'aide de la formule des probabilités totales pour une partition simple à plus de deux événements
  • Exercice : Donner la signification d'une case d'un tableau croisé d'effectifs
  • Exercice : Calculer la probabilité d'un événement à l'aide d'un tableau croisé d'effectifs
  • Exercice : Calculer la probabilité d'une union d'événements à l'aide d'un tableau croisé d'effectifs
  • Exercice : Calculer la probabilité d'une intersection d'événements à l'aide d'un tableau croisé d'effectifs
  • Exercice : Calculer une probabilité conditionnelle à l'aide d'un tableau croisé d'effectifs
  • Exercice : Déterminer si deux événements sont indépendants à l'aide d'un tableau croisé d'effectifs
  • Exercice : Compléter un tableau croisé d'effectifs correspondant à une situation donnée
  • Exercice : Représenter une succession de deux épreuves dépendantes à l'aide d'un tableau croisé d'effectifs
  • Problème : Étudier une succession de deux épreuves indépendantes dans un tableau croisé d'effectifs
  • Problème : Étudier un problème de probabilité à l'aide d'un tableau croisé d'effectifs
  • Exercice : Transformer un tableau croisé d'effectifs en arbre pondéré
  • Exercice : Donner la signification d'une branche dans un arbre pondéré
  • Exercice : Lire une probabilité sur un arbre pondéré
  • Exercice : Calculer la probabilité d'une union d'événements à l'aide d'un arbre pondéré
  • Exercice : Calculer la probabilité d'une intersection d'événements à l'aide d'un arbre pondéré
  • Exercice : Calculer une probabilité conditionnelle à l'aide de la formule de Bayes et d'un arbre pondéré
  • Exercice : Calculer la probabilité d'un événement à l'aide de la formule des probabilités totales dans un arbre pondéré
  • Exercice : Déterminer si deux événements sont indépendants à l'aide d'un arbre pondéré
  • Exercice : Compléter un arbre pondéré correspondant à une situation donnée
  • Exercice : Représenter une succession de deux épreuves indépendantes à l'aide d'un arbre pondéré
  • Exercice : Représenter une succession de deux épreuves dépendantes à l'aide d'un arbre pondéré
  • Problème : Étudier une succession de deux épreuves indépendantes à l'aide d'un arbre pondéré
  • Problème : Étudier une succession de deux épreuves dépendantes à l'aide d'un arbre pondéré
  • Problème : Estimer l'aire sous une parabole avec la méthode de Monte-Carlo
  • Problème : Étudier une succession de plus de deux épreuves indépendantes
  • Problème : Étudier une marche aléatoire
  • Méthode : Etudier le sens de variation d'une fonction
  • Méthode : Représenter une expérience aléatoire à l'aide d'un arbre pondéré

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  17711  avis

0.00
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2023