01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Première
  3. Mathématiques
  4. Problème : Étudier un problème de probabilité à l'aide d'un tableau croisé d'effectifs

Étudier un problème de probabilité à l'aide d'un tableau croisé d'effectifs Problème

Ce contenu a été rédigé par l'équipe éditoriale de Kartable.

Dernière modification : 02/02/2021 - Conforme au programme 2024-2025

Sur 35 élèves d'une classe de 2de, on compte 28 élèves qui souhaitent suivre la spécialité « mathématiques » en 1re, 21 élèves qui souhaitent suivre la spécialité « physique-chimie » en 1re et 5 élèves qui ne souhaitent suivre aucune de ces deux spécialités.

On choisit un élève au hasard dans la classe et on note :

  • M l'événement "l'élève choisi souhaite suivre la spécialité mathématiques" ;
  • P l'événement "l'élève choisi souhaite suivre la spécialité physique-chimie".

Quel tableau correspond à la situation donnée ?

Quelle est la probabilité que l'élève choisi ne souhaite suivre aucune des deux spécialités évoquées ?

Quelle est la probabilité que l'élève choisi souhaite suivre les deux spécialités évoquées ?

On sait que l'élève choisi au hasard souhaite suivre la spécialité « mathématiques ».

Quelle est la probabilité qu'il souhaite suivre la spécialité « physique-chimie » ?

La charte éditoriale garantit la conformité des contenus aux programmes officiels de l'Éducation nationale. en savoir plus

Les cours et exercices sont rédigés par l'équipe éditoriale de Kartable, composéee de professeurs certififés et agrégés. en savoir plus

Voir aussi
  • Cours : Probabilités conditionnelles et indépendance
  • Quiz : Probabilités conditionnelles et indépendance
  • Exercice : Définir l'univers d'une expérience
  • Exercice : Connaître la définition d'une probabilité conditionnelle
  • Exercice : Reconnaître une probabilité conditionnelle expliquée en langage naturel
  • Exercice : Différencier faux positif, faux négatif, vrai positif et vrai négatif
  • Exercice : Calculer une probabilité conditionnelle à l'aide des probabilités de l'intersection et de l'événement
  • Exercice : Calculer une probabilité conditionnelle à l'aide de la formule de Bayes
  • Exercice : Calculer une probabilité avec un arbre pondéré en utilisant la règle du produit des probabilités inscrites sur les branches
  • Exercice : Calculer une probabilité avec un arbre pondéré en utilisant la règle de la somme des probabilités inscrites sur les branches issues d'un même nœud
  • Exercice : Déterminer si deux événements sont indépendants à l'aide de la probabilité de leur intersection
  • Exercice : Calculer une probabilité conditionnelle dans le cas d'événements indépendants
  • Exercice : Extraire les probabilités d'un problème en langage naturel
  • Exercice : Déterminer la complétude de systèmes d'événements
  • Exercice : Calculer une probabilité à l'aide de la formule des probabilités totales pour une partition à deux événements
  • Exercice : Calculer une probabilité à l'aide de la formule des probabilités totales pour une partition simple à plus de deux événements
  • Exercice : Donner la signification d'une case d'un tableau croisé d'effectifs
  • Exercice : Calculer la probabilité d'un événement à l'aide d'un tableau croisé d'effectifs
  • Exercice : Calculer la probabilité d'une union d'événements à l'aide d'un tableau croisé d'effectifs
  • Exercice : Calculer la probabilité d'une intersection d'événements à l'aide d'un tableau croisé d'effectifs
  • Exercice : Calculer une probabilité conditionnelle à l'aide d'un tableau croisé d'effectifs
  • Exercice : Déterminer si deux événements sont indépendants à l'aide d'un tableau croisé d'effectifs
  • Exercice : Compléter un tableau croisé d'effectifs correspondant à une situation donnée
  • Exercice : Représenter une succession de deux épreuves dépendantes à l'aide d'un tableau croisé d'effectifs
  • Problème : Étudier une succession de deux épreuves indépendantes dans un tableau croisé d'effectifs
  • Exercice : Transformer un tableau croisé d'effectifs en arbre pondéré
  • Exercice : Donner la signification d'une branche dans un arbre pondéré
  • Exercice : Lire une probabilité sur un arbre pondéré
  • Exercice : Calculer la probabilité d'une union d'événements à l'aide d'un arbre pondéré
  • Exercice : Calculer la probabilité d'une intersection d'événements à l'aide d'un arbre pondéré
  • Exercice : Calculer une probabilité conditionnelle à l'aide de la formule de Bayes et d'un arbre pondéré
  • Exercice : Calculer la probabilité d'un événement à l'aide de la formule des probabilités totales dans un arbre pondéré
  • Exercice : Déterminer si deux événements sont indépendants à l'aide d'un arbre pondéré
  • Exercice : Compléter un arbre pondéré correspondant à une situation donnée
  • Exercice : Représenter une succession de deux épreuves indépendantes à l'aide d'un arbre pondéré
  • Exercice : Représenter une succession de deux épreuves dépendantes à l'aide d'un arbre pondéré
  • Problème : Étudier une succession de deux épreuves indépendantes à l'aide d'un arbre pondéré
  • Problème : Étudier une succession de deux épreuves dépendantes à l'aide d'un arbre pondéré
  • Problème : Estimer l'aire sous une parabole avec la méthode de Monte-Carlo
  • Problème : Estimer pi avec la méthode de Monte-Carlo
  • Problème : Étudier une succession de plus de deux épreuves indépendantes
  • Problème : Étudier une marche aléatoire
  • Méthode : Etudier le sens de variation d'une fonction
  • Méthode : Représenter une expérience aléatoire à l'aide d'un arbre pondéré

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20259  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025