01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Terminale
  3. Mathématiques
  4. Problème : Simuler la planche de Galton à l'aide d'un algorithme

Simuler la planche de Galton à l'aide d'un algorithme Problème

Ce contenu a été rédigé par l'équipe éditoriale de Kartable.

Dernière modification : 01/02/2021 - Conforme au programme 2024-2025

La planche de Galton est une planche à n étages qui sert à simuler des lois du hasard. Au sommet, plusieurs billes tombent au travers d'une pyramide de clous sur une planche inclinée. À l'arrivée, les billes tombent dans des conteneurs de taille identique.

-

On souhaite écrire un algorithme pour simuler la planche de Galton.

Quels sont les paramètres que l'algorithme peut prendre en entrée ?

On donne l'algorithme suivant :

B, N, I, J, A, X : entiers

L_1 : listes

Lire B, N

Effacer L_1 

pour I de 1 à N+1 faire :

   0 \to L_1(I)

fin

pour I de 1 à B faire

    0 \to X

   pour J de 1 à N faire

      EntAléa(0,1) \to A

      si A = 1 alors

          X+1 \to X

      fin

   fin

    L_1(X+1) + 1 \to L_1(X+1)

fin

Afficher L_1 

À quoi correspond la variable A  ?

Que représente la variable X  ?

À quoi correspond la variable L_1  ?

La charte éditoriale garantit la conformité des contenus aux programmes officiels de l'Éducation nationale. en savoir plus

Les cours et exercices sont rédigés par l'équipe éditoriale de Kartable, composéee de professeurs certififés et agrégés. en savoir plus

Voir aussi
  • Cours : La loi binomiale
  • Quiz : La loi binomiale
  • Exercice : Modéliser une situation par une succession d’épreuves indépendantes
  • Exercice : Représenter une situation modélisable en succession d’épreuves indépendantes par un arbre
  • Exercice : Modéliser une situation par une succession de deux ou trois épreuves quelconques
  • Exercice : Représenter une situation modélisable en succession de deux ou trois épreuves quelconques par un arbre
  • Exercice : Calculer une probabilité en utilisant l’indépendance
  • Exercice : Calculer une probabilité en utilisant des probabilités conditionnelles
  • Exercice : Calculer une probabilité en utilisant la formule des probabilités totales
  • Exercice : Connaître les caractéristiques d'une épreuve de Bernoulli
  • Exercice : Connaître les caractéristiques d'un schéma de Bernoulli
  • Exercice : Déterminer si une situation est une épreuve de Bernoulli
  • Exercice : Déterminer si une situation suit un schéma de Bernoulli
  • Exercice : Déterminer le schéma de Bernoulli d'une situation
  • Exercice : Connaître les caractéristiques de la loi binomiale
  • Exercice : Déterminer le loi binomiale correspondant à une situation
  • Exercice : Calculer numériquement une probabilité du type P(X = k) d'une loi binomiale
  • Exercice : Calculer numériquement une probabilité du type P(X ≤ k) d'une loi binomiale
  • Exercice : Calculer numériquement une probabilité du type P(k ≤ X ≤ k’ ) d'une loi binomiale
  • Exercice : Déterminer un intervalle sur lequel P(X) est inférieure à une valeur donnée pour une loi binomiale
  • Exercice : Déterminer un intervalle sur lequel P(X) est supérieure à une valeur donnée pour une loi binomiale
  • Exercice : Démontrer l'expression de la probabilité de k succès dans le schéma de Bernoulli
  • Problème : Résoudre un problème de seuil à l'aide de l'expression de la loi binomiale
  • Problème : Résoudre un problème de comparaison à l'aide de l'expression de la loi binomiale
  • Problème : Résoudre un problème d’optimisation relatif à des probabilités de nombre de succès à l'aide de l'expression de la loi binomiale
  • Problème : Etudier un problème de la surréservation à l'aide d'un algorithme
  • Problème : Simuler un échantillon d’une variable aléatoire à l'aide d'un algorithme
  • Exercice type bac : Polynésie 2024, Lancer d'une pièce équilibrée
  • Méthode : Reconnaître une loi binomiale
  • Méthode : Calculer et interpréter E(X) dans une loi binomiale
  • Méthode : Montrer qu'une variable aléatoire suit une loi binomiale
  • Méthode : Calculer une probabilité dans le cadre de la loi binomiale

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20259  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025