01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Terminale
  3. Mathématiques
  4. Exercice : Connaître l'expression du produit scalaire en fonction des normes des projetés orthogonaux

Connaître l'expression du produit scalaire en fonction des normes des projetés orthogonaux Exercice

Ce contenu a été rédigé par l'équipe éditoriale de Kartable.

Dernière modification : 12/05/2025 - Conforme au programme 2024-2025

Soient A, B, C et D quatre points du plan (avec A\neq B et C\neq D ).
Soient A' et B' les projetés orthogonaux des points A et B sur la droite (CD).

Vrai ou faux ? On peut exprimer \overrightarrow{AB} \cdot \overrightarrow{CD} en fonction des distances A'B' et CD d'une seule manière quels que soient les sens des vecteurs \overrightarrow{A'B'} et \overrightarrow{CD}.

Soient A, B, C et D quatre points du plan (avec A\neq B et C\neq D ).
Soient A' et B' les projetés orthogonaux des points A et B sur la droite (CD).

\overrightarrow{A'B'} et \overrightarrow{CD} sont dans le même sens.

Quelle est l'expression de \overrightarrow{AB} \cdot \overrightarrow{CD} en fonction des distances A'B' et CD ?

Soient A, B, C et D quatre points du plan (avec A\neq B et C\neq D ). Soient A' et B' les projetés orthogonaux des points A et B sur la droite (CD).

\overrightarrow{A'B'} et \overrightarrow{CD} sont de sens contraires.

Quelle est l'expression de \overrightarrow{AB} \cdot \overrightarrow{CD} en fonction des distances A'B' et CD ?

Sur la figure représentée ci-dessous, l'unité du quadrillage est l'unité graphique du repère.

Soient A, B, C et D quatre points du plan (avec A\neq B et C\neq D ).
Soient A' et B' les projetés orthogonaux des points A et B sur la droite (CD).

Que vaut \overrightarrow{AB} \cdot \overrightarrow{CD} ?

-

La charte éditoriale garantit la conformité des contenus aux programmes officiels de l'Éducation nationale. en savoir plus

Les cours et exercices sont rédigés par l'équipe éditoriale de Kartable, composéee de professeurs certififés et agrégés. en savoir plus

Voir aussi
  • Cours : Le produit scalaire
  • Quiz : Le produit scalaire
  • Exercice : Connaître l'expression du produit scalaire en fonction des normes et du cosinus
  • Exercice : Calculer un produit scalaire grâce au cosinus
  • Exercice : Identifier le projeté orthogonal d'un point sur une droite dans l'espace
  • Exercice : Identifier le projeté orthogonal d'un vecteur sur une droite dans l'espace
  • Exercice : Identifier le projeté orthogonal d'un point sur un plan dans l'espace
  • Exercice : Identifier le projeté orthogonal d'un vecteur sur un plan dans l'espace
  • Exercice : Calculer un produit scalaire à l'aide de projetés orthogonaux dans l'espace
  • Exercice : Connaître les identités remarquables avec le produit scalaire
  • Exercice : Calculer un produit scalaire à l'aide de ses identités remarquables dans l'espace
  • Exercice : Connaître la bilinéarité du produit scalaire
  • Exercice : Utiliser la décomposition d'un vecteur pour calculer un produit scalaire
  • Exercice : Calculer un produit scalaire sans coordonnées de vecteurs
  • Exercice : Connaître l'expression du produit scalaire en fonction des coordonnées des vecteurs dans l'espace
  • Exercice : Calculer un produit scalaire à l'aide des coordonnées des vecteurs dans l'espace
  • Exercice : Déterminer l'orthogonalité de deux vecteurs sans coordonnées de vecteurs dans l'espace
  • Exercice : Déterminer l'orthogonalité de deux vecteurs à l'aide de coordonnées de vecteurs dans l'espace
  • Exercice : Déterminer l'orthogonalité d'un plan et d'une droite sans coordonnées de vecteurs dans l'espace
  • Exercice : Déterminer l'orthogonalité d'un plan et d'une droite à l'aide de coordonnées de vecteurs dans l'espace
  • Exercice : Calculer une norme à l'aide du produit scalaire et du cosinus
  • Exercice : Calculer une norme à l'aide des identités remarquables du produit scalaire
  • Exercice : Calculer une norme à l'aide de la relation de Chasles
  • Exercice : Calculer une norme sans coordonnées de vecteurs
  • Exercice : Calculer une norme à l'aide des coordonnées des vecteurs dans l'espace
  • Exercice : Déterminer si une base est une base orthonormée
  • Exercice : Déterminer un repère orthonormé adapté
  • Exercice : Calculer une longueur dans l'espace sans coordonnées de vecteurs
  • Exercice : Calculer une longueur dans l'espace à l'aide des coordonnées des vecteurs
  • Exercice : Calculer un angle dans l'espace à l'aide du produit scalaire et des normes
  • Exercice : Déterminer si un vecteur est normal à un plan à l'aide de ses vecteurs directeurs
  • Exercice : Déterminer un vecteur normal d'un plan à l'aide du produit scalaire et de ses vecteurs directeurs
  • Exercice : Déterminer le plan passant par un point et normal à un vecteur donné
  • Problème : Résoudre un problème de géométrie dans l'espace à l'aide du produit scalaire
  • Exercice : Déterminer la distance entre un point et une droite à l'aide du projeté orthogonal et du produit scalaire dans l'espace
  • Exercice : Déterminer la distance entre un point et un plan à l'aide du projeté orthogonal et du produit scalaire dans l'espace
  • Problème : Étudier l'orthogonalité de deux droites dans l'espace
  • Problème : Étudier l'orthogonalité d'une droite et d'un plan dans l'espace
  • Problème : Étudier le plan médiateur de deux points
  • Exercice : Démontrer que le projeté orthogonal d’un point M sur un plan P est le point de P le plus proche de M
  • Problème : Etudier l'intersection d’une sphère et d’un plan, plan tangent à une sphère en un point
  • Méthode : Montrer qu'un vecteur est normal à un plan

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20259  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025