Dans chacun des cas suivants, déterminer si la suite (u_n) est géométrique.
Soit la suite (u_n) définie par :
\forall n \in \mathbb{N}, u_n=50\times 2^n
Soit la suite (u_n) définie par :
\forall n \in \mathbb{N}, u_n=−3\times(−1)^n
Soit la suite (u_n) définie par :
\forall n \in \mathbb{N}, u_n=\dfrac{5}{2}\times\dfrac{(−3)^n}{n}
Soit la suite (u_n) définie par :
\forall n \in \mathbb{N}, u_n=2{,}5\times n^2
Soit la suite (u_n) définie par :
\forall n \in \mathbb{N}, u_n=2^{−3n+2}