01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Première
  3. Mathématiques
  4. Méthode : Montrer qu'une suite est arithmétique et donner sa forme explicite

Montrer qu'une suite est arithmétique et donner sa forme explicite Méthode

Sommaire

1Calculer u_{n+1}-u_n 2Conclure que \left(u_n\right) est arithmétique 3Donner l'écriture explicite de \left(u_n\right)

Une suite arithmétique est une suite telle que \forall n \in \mathbb{N}, u_{n+1} = u_n +r, avec r\in \mathbb{R}. On passe d'un terme au suivant en ajoutant toujours le même réel r.

Une fois que l'on a identifié une suite arithmétique, on peut donner sa forme explicite.

On considère la suite définie par :

\forall n \in \mathbb{N}, u_n = \left(n+2\right)^2-n^2

Montrer que \left(u_n\right) est une suite arithmétique et donner sa forme explicite.

Etape 1

Calculer u_{n+1}-u_n

Pour tout entier n, on calcule u_{n+1}-u_n.

Soit n un entier naturel. On calcule :

u_{n+1}-u_n = \left[ \left(n+3\right)^2-\left(n+1\right)^2 \right]-\left[ \left(n+2\right)^2-n^2 \right]

u_{n+1}-u_n = \left[ n^2+6n+9-n^2-2n-1 \right]-\left[n^2+4n+4-n^2 \right]

u_{n+1}-u_n = \left[ 4n+8\right]-\left[4n+4 \right]

u_{n+1}-u_n = 4n+8-4n-4

u_{n+1}-u_n = 4

Etape 2

Conclure que \left(u_n\right) est arithmétique

S'il existe un réel r, tel que \forall n \in\mathbb{N}, u_{n+1}-u_n = r, alors on conclut que \left(u_n\right) est arithmétique.

On précise la valeur de sa raison r et de son premier terme (en général u_0 ).

Lorsque l'on montre que pour tout entier n, u_{n+1}- u_n =r , la raison r doit être un réel qui ne dépend pas de n.

\forall n \in \mathbb{N}, u_{n+1}-u_n=4 \in \mathbb{R}.

Donc \left(u_n\right) est arithmétique de raison r=4 et de premier terme u_0 = \left(0+2\right)^2-0^2= 4.

Etape 3

Donner l'écriture explicite de \left(u_n\right)

Si \left(u_n\right) est arithmétique de raison r et de premier terme u_0, alors :

\forall n \in \mathbb{N}, u_n = u_0+nr

Plus généralement, si le premier terme est u_p, alors :

\forall n \geq p, u_n = u_p+\left(n-p\right)r

Comme \left(u_n\right) est arithmétique de raison r=4 et de premier terme u_0=4, alors \forall n \in \mathbb{N}, u_n = u_0 + nr.

Ainsi :

\forall n \in \mathbb{N}, u_n = 4+4n = 4\left(n+1\right)

Voir aussi
  • Cours : Suites numériques
  • Méthode : Déterminer le sens de variation d'une suite arithmétique
  • Méthode : Déterminer le sens de variation d'une suite géométrique
  • Exercice : Connaître le vocabulaire et la notation des suites
  • Exercice : Identifier le mode de génération d'une suite
  • Exercice : Calculer les premiers termes d'une suite définie de manière explicite
  • Exercice : Calculer les premiers termes d'une suite définie par récurrence
  • Exercice : Associer sens de variation et critère sur les termes successifs d'une suite
  • Exercice : Lire graphiquement la valeur d'un terme d'une suite définie explicitement
  • Exercice : Lire graphiquement la valeur d'un terme d'une suite définie par récurrence
  • Problème : Calculer une factorielle à l'aide d'un algorithme
  • Exercice : Conjecturer la limite éventuelle d'une suite à l'aide de sa représentation graphique
  • Exercice : Conjecturer la limite éventuelle d'une suite à l'aide de ses termes consécutifs
  • Problème : Écrire un algorithme de seuil
  • Exercice : Identifier une suite arithmétique à l'aide de son expression explicite
  • Exercice : Identifier une suite arithmétique à l'aide de sa relation de récurrence
  • Exercice : Identifier une suite arithmétique à l'aide de sa représentation graphique
  • Exercice : Identifier une suite arithmétique à l'aide d'une description en langue naturelle
  • Exercice : Déterminer si une suite est arithmétique
  • Exercice : Calculer les premiers termes d'une suite arithmétique définie par récurrence
  • Exercice : Calculer la raison et le premier terme d'une suite arithmétique à l'aide de son expression explicite
  • Exercice : Déterminer le premier terme et la raison d'une suite arithmétique
  • Exercice : Calculer la raison et le premier terme d'une suite arithmétique modélisant un phénomène discret à croissance linéaire
  • Exercice : Calculer le terme général d'une suite arithmétique à l'aide de son premier terme et de sa raison
  • Exercice : Calculer le terme général d'une suite arithmétique définie par récurrence
  • Exercice : Calculer le terme général d'une suite arithmétique définie par un algorithme
  • Exercice : Déterminer le sens de variation d'une suite arithmétique à l'aide de sa raison
  • Problème : Étudier une suite arithmétique définie par récurrence
  • Problème : Étudier une suite arithmétique définie par un algorithme de calcul
  • Problème : Étudier un phénomène discret à croissance linéaire à l'aide d'une suite arithmétique
  • Problème : Écrire un algorithme de calcul d'un terme d'une suite arithmétique
  • Problème : Déterminer la fonction génératrice d'une suite arithmétique
  • Exercice : Identifier une suite géométrique à l'aide de son expression explicite
  • Exercice : Identifier une suite géométrique à l'aide de sa relation de récurrence
  • Exercice : Identifier une suite géométrique à l'aide de sa représentation graphique
  • Exercice : Identifier une suite géométrique à l'aide d'une description en langue naturelle
  • Exercice : Déterminer si une suite est géométrique
  • Exercice : Calculer les premiers termes d'une suite géométrique définie par récurrence
  • Exercice : Calculer la raison et le premier terme d'une suite géométrique à l'aide de son expression explicite
  • Exercice : Déterminer le premier terme et la raison d'une suite géométrique
  • Exercice : Calculer la raison et le premier terme d'une suite géométrique modélisant un phénomène discret à croissance exponentielle
  • Exercice : Calculer le terme général d'une suite géométrique à l'aide de son premier terme et de sa raison
  • Exercice : Calculer le terme général d'une suite géométrique définie par récurrence
  • Exercice : Calculer le terme général d'une suite géométrique définie par un algorithme
  • Exercice : Déterminer le sens de variation d'une suite géométrique à l'aide de sa raison
  • Problème : Étudier une suite géométrique définie par récurrence
  • Problème : Étudier une suite géométrique définie par un algorithme de calcul
  • Problème : Utilisation d'une suite géométrique dans une situation réelle
  • Problème : Écrire un algorithme de calcul d'un terme d'une suite géométrique
  • Exercice : Calculer une somme d'entiers consécutifs
  • Exercice : Calculer la somme des termes consécutifs d'une suite arithmétique
  • Exercice : Calculer la somme des puissances de 1 à n d'un nombre réel donné
  • Exercice : Calculer la somme des termes consécutifs d'une suite géométrique
  • Exercice : Calculer une somme
  • Problème : Calculer la somme des n premiers carrés
  • Problème : Calculer la somme des n premiers cubes
  • Problème : Étudier la tour de Hanoï
  • Problème : Étudier une suite de Syracuse
  • Problème : Étudier une suite de Fibonacci
  • Quiz : Suites numériques
  • Méthode : Calculer les premiers termes d'une suite
  • Méthode : Représenter graphiquement une suite définie de manière explicite
  • Méthode : Représenter graphiquement une suite définie par récurrence
  • Méthode : Montrer qu'une suite est bornée
  • Méthode : Montrer qu'une suite est géométrique et donner sa forme explicite
  • Méthode : Calculer une somme de termes consécutifs d'une suite

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20257  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025