Que vaut \int_{0}^{1} (x+1)^2 \, \mathrm{d}x ?
Les primitives de x \mapsto (x+1)^2 s'écrivent :
F(x) = \dfrac{1}{3}(x+1)^3 + C, C \in \mathbb{R}
Ainsi :
\int_{0}^{1} (x+1)^2 \, \mathrm{d}x = F(1) - F(0)
\int_{0}^{1} (x+1)^2 \, \mathrm{d}x = \dfrac{1}{3}(1+1)^3 - \dfrac{1}{3}(0+1)^3
\int_{0}^{1} (x+1)^2 \, \mathrm{d}x = \dfrac{8}{3} - \dfrac{1}{3} = \dfrac{7}{3}
Donc \int_{0}^{1} (x+1)^2 \, \mathrm{d}x = \dfrac{7}{3} .
Que vaut \int_{0}^{1} \dfrac{1}{(x+1)^2} \, \mathrm{d}x ?
Les primitives de x \mapsto \dfrac{1}{(x+1)^2} s'écrivent :
F(x) = - \dfrac{1}{x+1} + C, C \in \mathbb{R}
Ainsi :
\int_{0}^{1} \dfrac{1}{(x+1)^2} \, \mathrm{d}x = F(1) - F(0)
\int_{0}^{1} \dfrac{1}{(x+1)^2} \, \mathrm{d}x = - \dfrac{1}{1+1} + \dfrac{1}{0+1}
\int_{0}^{1} \dfrac{1}{(x+1)^2} \, \mathrm{d}x = - \dfrac{1}{2} + 1
Donc \int_{0}^{1} \dfrac{1}{(x+1)^2} \, \mathrm{d}x = \dfrac{1}{2} .
Que vaut \int_{0}^{1} \dfrac{1}{(3x-4)^2} \, \mathrm{d}x ?
Les primitives de x \mapsto \dfrac{1}{(3x-4)^2} s'écrivent :
F(x) = - \dfrac{1}{3} \dfrac{1}{3x-4} + C, C \in \mathbb{R}
F(x) = - \dfrac{1}{3(3x-4)} + C, C \in \mathbb{R}
Ainsi :
\int_{0}^{1} \dfrac{1}{(3x-4)^2} \, \mathrm{d}x = F(1) - F(0)
\int_{0}^{1}\dfrac{1}{(3x-4)^2} \, \mathrm{d}x =- \dfrac{1}{3(3 \times 1-4)} + \dfrac{1}{3(3 \times 0-4)}
\int_{0}^{1} \dfrac{1}{(3x-4)^2} \, \mathrm{d}x =- \dfrac{1}{-3} + \dfrac{1}{-12}
\int_{0}^{1} \dfrac{1}{(x+1)^2} \, \mathrm{d}x = \dfrac{1}{3} - \dfrac{1}{12}
Donc \int_{0}^{1} \dfrac{1}{(3x-4)^2} \, \mathrm{d}x = \dfrac{1}{4} .
Que vaut \int_{0}^{1} \dfrac{1}{\sqrt{2x+1}} \, \mathrm{d}x ?
Les primitives de x \mapsto \dfrac{1}{\sqrt{2x+1}} s'écrivent :
F(x) = \sqrt{2x+1} + C, C \in \mathbb{R}
Ainsi :
\int_{0}^{1} \dfrac{1}{\sqrt{2x+1}} \, \mathrm{d}x = F(1) - F(0)
\int_{0}^{1} \dfrac{1}{\sqrt{2x+1}} \, \mathrm{d}x = \sqrt{2\times 1+1} - \sqrt{2 \times 0+1}
Donc \int_{0}^{1} \dfrac{1}{\sqrt{2x+1}} \, \mathrm{d}x = \sqrt{3} - 1 .
Que vaut \int_{0}^{1} (2x-1)^2 \, \mathrm{d}x ?
Les primitives de x \mapsto (2x-1)^2 s'écrivent :
F(x) = \dfrac{1}{3} \times \dfrac{1}{2} (2x-1)^3 + C, C \in \mathbb{R}
F(x) = \dfrac{1}{6} (2x-1)^3 + C, C \in \mathbb{R}
Ainsi :
\int_{0}^{1} (2x-1)^2 \, \mathrm{d}x = F(1) - F(0)
\int_{0}^{1} (2x-1)^2 \, \mathrm{d}x = \dfrac{1}{6} (2 \times 1 -1)^3 - \dfrac{1}{6} (2 \times 0-1)^3
\int_{0}^{1} (2x-1)^2 \, \mathrm{d}x = \dfrac{1}{6} 1^3 - \dfrac{1}{6} (-1)^3
\int_{0}^{1} (2x-1)^2 \, \mathrm{d}x = \dfrac{2}{6}
Donc \int_{0}^{1} (2x-1)^2 \, \mathrm{d}x = \dfrac{1}{3} .