01 76 38 08 47
Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

Logo Kartable
AccueilParcourirRechercheSe connecter

Pour profiter de 10 contenus offerts.

  1. Accueil
  2. Terminale
  3. Mathématiques
  4. Méthode : Démontrer qu'une intégrale est positive ou négative

Démontrer qu'une intégrale est positive ou négative Méthode

Sommaire

1Déterminer le signe de f\left(x\right) sur \left[ a;b \right] 2Vérifier le sens des bornes 3Conclure sur le signe de l'intégrale

Ce contenu a été rédigé par l'équipe éditoriale de Kartable.

Dernière modification : 12/05/2025 - Conforme au programme 2024-2025

On peut dans certains cas déterminer le signe d'une intégrale de la forme \int_{a}^{b} f\left(x\right) \ \mathrm dx sans avoir à la calculer explicitement. Pour cela, on doit déterminer le signe de la fonction f.

Déterminer le signe de l'intégrale suivante :

\int_{2}^{5} x^2e^x \ \mathrm dx

Etape 1

Déterminer le signe de f\left(x\right) sur \left[ a;b \right]

On détermine le signe de la fonction f sur \left[ a;b \right].

Pour tout réel x compris entre 2 et 5, on a :

  • x^2\geqslant 0\\
  • e^x\geqslant 0

Donc, par produit :

\forall x\in\left[ 2;5 \right],\ x^2e^x\geqslant0

Etape 2

Vérifier le sens des bornes

On vérifie que les bornes sont dans le bon sens, c'est-à-dire que a est inférieur ou égal à b.

On a bien 2\leqslant 5, donc les bornes sont dans le "bon sens".

Etape 3

Conclure sur le signe de l'intégrale

On applique la positivité de l'intégration :

  • Si f est positive sur \left[ a;b \right], \int_{a}^{b} f\left(x\right) \ \mathrm dx est positive.
  • Si f est négative sur \left[ a;b \right], \int_{a}^{b} f\left(x\right) \ \mathrm dx est négative.

Si le signe de f n'est pas constant sur \left[ a;b \right], on ne poursuit pas cette méthode car elle ne permettra pas de conclure.

Comme x\longmapsto x^2e^x est positive sur l'intervalle \left[ 2;5 \right], par positivité de l'intégration, on a :

\int_{2}^{5} x^2e^x \ \mathrm dx\geqslant 0

La charte éditoriale garantit la conformité des contenus aux programmes officiels de l'Éducation nationale. en savoir plus

Les cours et exercices sont rédigés par l'équipe éditoriale de Kartable, composéee de professeurs certififés et agrégés. en savoir plus

Voir aussi
  • Cours : Le calcul intégral
  • Quiz : Le calcul intégral
  • Exercice : Connaître les caractéristiques d'une intégrale
  • Exercice : Déterminer sur un quadrillage l'intégrale d'une fonction simple sur un intervalle
  • Exercice : Encadrer à l'aide d'un quadrillage l'intégrale d'une fonction simple sur un intervalle
  • Exercice : Encadrer à l'aide d'un quadrillage la moyenne d'une fonction simple sur un intervalle
  • Exercice : Déterminer si une fonction admet une primitive sur un intervalle
  • Exercice : Calculer une intégrale d'une fonction usuelle en passant par la primitive directement
  • Exercice : Calculer une intégrale d'une composition de fonctions usuelles en passant par la primitive directement
  • Exercice : Calculer une intégrale de sommes de fonctions usuelles en passant par la primitive directement
  • Exercice : Calculer une intégrale de combinaison linéaire de fonctions usuelles et de composition de fonctions usuelles en passant par la primitive directement
  • Exercice : Calculer une intégrale d'une fonction usuelle à l'aide de la relation de Chasles
  • Exercice : Calculer une intégrale d'une composition de fonctions usuelles à l'aide de la relation de Chasles
  • Exercice : Calculer une intégrale de sommes de fonctions usuelles à l'aide de la relation de Chasles
  • Exercice : Calculer une intégrale de combinaison linéaire de fonctions usuelles et de composition de fonctions usuelles à l'aide de la relation de Chasles
  • Exercice : Calculer une intégrale d'une fonction usuelle à l'aide de la relation de l'intégration par partie
  • Exercice : Calculer une intégrale d'une composition de fonctions usuelles à l'aide de l'intégration par partie
  • Exercice : Calculer une intégrale de sommes de fonctions usuelles à l'aide de l'intégration par partie
  • Exercice : Calculer une intégrale de combinaison linéaire de fonctions usuelles et de composition de fonctions usuelles à l'aide de l'intégration par partie
  • Exercice : Majorer une intégrale d'une fonction usuelle à l'aide d'une comparaison avec une autre fonction
  • Exercice : Majorer une intégrale d'une composition de fonctions usuelles à l'aide d'une comparaison avec une autre fonction
  • Exercice : Majorer une intégrale de sommes de fonctions usuelles à l'aide d'une comparaison avec une autre fonction
  • Exercice : Majorer une intégrale de combinaison linéaire de fonctions usuelles et de composition de fonctions usuelles à l'aide d'une comparaison avec une autre fonction
  • Exercice : Minorer une intégrale d'une fonction usuelle à l'aide d'une comparaison avec une autre fonction
  • Exercice : Minorer une intégrale d'une composition de fonctions usuelles à l'aide d'une comparaison avec une autre fonction
  • Exercice : Minorer une intégrale de sommes de fonctions usuelles à l'aide d'une comparaison avec une autre fonction
  • Exercice : Minorer une intégrale de combinaison linéaire de fonctions usuelles et de composition de fonctions usuelles à l'aide d'une comparaison avec une autre fonction
  • Exercice : Etudier l'aire entre deux courbes menant à une combinaison linéaire de fonctions usuelles à l'aide d'une comparaison avec une autre fonction
  • Problème : Etudier une suite d'intégrales sans relation de récurrence
  • Problème : Etudier une suite d'intégrales avec relation de récurrence
  • Exercice : Interpréter le sens d'une intégrale
  • Exercice : Démontrer la définition de la primitive par l'intégrale
  • Exercice : Démontrer l'intégration par partie
  • Problème : Calculer une intégrale par méthode des rectangles à l'aide d'un algorithme
  • Problème : Calculer une intégrale par méthode des milieux à l'aide d'un algorithme
  • Problème : Calculer une intégrale par méthode des trapèzes à l'aide d'un algorithme
  • Problème : Calculer une intégrale par méthode de Monte-Carlo à l'aide d'un algorithme
  • Exercice type bac : Amérique du Nord 2024, Etude d'une suite d'intégrales
  • Méthode : Calculer une intégrale
  • Méthode : Encadrer une intégrale
  • Méthode : Etudier le sens de variation d'une suite définie par une intégrale
  • Méthode : Calculer l'aire sous la courbe d'une fonction
  • Méthode : Calculer l'aire du domaine compris entre deux courbes

Nos conseillers pédagogiques sont à votre écoute 7j/7

Nos experts chevronnés sont joignables par téléphone et par e-mail pour répondre à toutes vos questions.
Pour comprendre nos services, trouver le bon accompagnement ou simplement souscrire à une offre, n'hésitez pas à les solliciter.

support@kartable.fr
01 76 38 08 47

Téléchargez l'application

Logo application Kartable
KartableWeb, iOS, AndroidÉducation

4,5 / 5  sur  20259  avis

0.00
app androidapp ios
  • Contact
  • Aide
  • Livres
  • Mentions légales
  • Recrutement

© Kartable 2025